

Interfacing FlashRunner with RH850 family MCUs
(F1x, F1xx, D1x, P1x, P1xx and U2Ax series)

1. Introduction

The RH850 Family of 32-bit automotive microcontrollers (MCUs) offers high performance

balanced with very low power consumption over a wide and scalable range of products. This family
offers rich functional safety and embedded security features needed for new and advanced
automotive applications.

You can download the latest version of this document from this static link: Interfacing FlashRunner
with RH850 family MCUs.

DC11593
Driver 3.40
January 2024
F. Devescovi

https://smh-tech.com/remos_docs_remoto/Interfacing%20FlashRunner%20with%20RH850%20family%20MCUs.pdf
https://smh-tech.com/remos_docs_remoto/Interfacing%20FlashRunner%20with%20RH850%20family%20MCUs.pdf

2. Contents

1. Introduction ... 1

2. Contents ... 2

3. Tips and tricks to flash RH850 MCUs... 3

4. Option Bytes .. 9

RV40F flash technology ... 9
RV28F flash technology ... 10

5. Extended Option Bytes ... 11

6. Security Management .. 13

RV40F flash technology ... 13
RV28F flash technology ... 14

7. ICU-S Management .. 16

8. Block Erase ... 17

3. Tips and tricks to flash RH850 MCUs

In this section, we want to explain which operations are performed in the target devices and how
these operations work. This knowledge may help you to optimize even more your application.

FlashRunner uses CSI (Clocked Serial Interface, with HandShake) to access to the memories of
these devices.

CSI/HS is a 3-wired serial synchronous interface that makes use of the following signals:

1. FPCK (Serial clock)

2. FPDR (TxD, programmer side)
3. FPDT (RxD, programmer side)

In addition to these protocol lines, FlashRunner also need to control the FLMD0 and FLMD1 lines for

activating the factory shipped bootloader upon RST signal release. Reset line is very important and

very critical as well. It is crucial to have no interferences on the reset line because it could cause
strange behaviours of the device and the operations could likely fail.

The following option must be also properly set according to board’s configuration.

#TCSETPAR FOSC <xtal_freq>

Programming algorithm will automatically choose and handshake the maximum available CPU
frequency so to optimize performances.
Caution: A wrong setting of oscillator frequency parameter could affect communication stability or
prevent communication to happen at all.

Once the bootloader has been activated, communication between FlashRunner and the MCU takes
place by means of Request Frames (issued by the programmer) and Response Frames (issued by the
target device).

The above mentioned serial approach is the same of Renesas Flash Programmer and/or
FP6 Terminal.

So said, the variety of supported commands depends on the factory shipped bootloader, that is, the
ones implemented by Renesas.

Let us now analyse the standard commands:

• MASSERASE

This command erases all the contents of selected memory.

Supported memories for this command are:
- Code Flash [F] Both Flash Technologies

- Data Flash [E] Both Flash Technologies
- User Boot Area [U] Both Flash Technologies
- Extended Data Area [D] RV28F Flash Technology
- Chip [C] Both Flash Technologies

Optionally, it is also possible to send additional parameters to this command to select only
some blocks of memory to be erased. This can be useful to reduce the erase time and it could
be needed if the user wants to preserve some data into the memory and partially reprogram
it. See chapter Block Erase for more information.
Masserase duration depends only on the target device characteristics and there is not much
that we can do to improve this. Typically, it is extremely long, even longer than all the other
operations combined together.
The suggestion is to skip this operation in case the device is virgin (i.e. factory shipped). This
can be done using a conditional script based on the result of the blankcheck operation:

#IFERR TPCMD BLANKCHECK F

#THEN TPCMD MASSERASE F

#THEN TPCMD BLANKCHECK F

Care must be taken on target devices with ICU-S (Intelligent Cryptographic Unit).
On those MCUs the last 1KB or 2KB of Data Flash are reserved for the cryptographic

keys of ICU-S.
Once the ICU-S has been activated, #TPCMD MASSERASE E command will skip that
reserved area, since it is not meant to be an user available area.
In case ICU-S area can be erased (and that depends on target device), it is still possible to erase
it with the following command:

#TPCMD MASSERASE C

This command will fully erase Code Flash, Data Flash and User Boot Area, so

once issued, it could then be followed by a #TPCMD BLANKCHECK command for all the
target memories and no further masserases are necessary.
To know whether ICU-S is available on target device, activated and erasable the following
option can be used:

#TCSETPAR PRINT_INFO_LOG <YES/NO>

When set to YES following information will be added to the log when connecting:

• BLANKCHECK

This command checks that all the bits of the selected memory are set to 1 (erased state).

Supported memories for this command are:
- Code Flash [F] Both Flash Technologies
- Data Flash [E] Both Flash Technologies

- User Boot Area [U] Both Flash Technologies
- Extended Data Area [D] RV28F Flash Technology

This operation is executed internally by the device and it is typically extremely fast.
Optionally, it is also possible to send two additional parameters to this command: the address
from where to start checking and the number of bytes to check.
These parameters will be previuosly checked by the algorithm to prevent alignment issues
(granularity, which can also be checked when).
The duration of this operation depends on the size of the memory to check and
communication speed doesn’t speed up the process.

Care must be taken for devices having ICU-S (Intelligent Cryptographic Unit).
When a blankcheck of Data Flash on these devices is performed, if no additional parameters
are provided, ICU-S reserved area blankcheck is skipped by the algorithm.

• PROGRAM

This command takes the Customer’s data from the FRB file and programs them into selected
memory.

Supported memories for this command are:
- Code Flash [F] Both Flash Technologies
- Data Flash [E] Both Flash Technologies

- User Boot Area [U] Both Flash Technologies

- Option Bytes [O] RV40F Flash Technology
- Configuration Setting Area [A] RV28F Flash Technology
- Security Setting Area [S] RV28F Flash Technology

- Extended Data Area [D] RV28F Flash Technology

Optionally, it is also possible to send two additional parameters to this command: the address
from where to start programming and the number of bytes to be programmed (see example).

#TPCMD PROGRAM F <start_address> <size>

As above said, these parameters will be previuosly checked by the algorithm to prevent
alignment issues (granularity mismatch).

The duration of this command depends on many factors which are all important:
o The target device characteristics, in other words, how much time is needed to write

data into the memory.
o The target device frequency because it determines how fast the device is able to

process incoming data.
o Protocol frequency because it sets the bitrate of the communication between

FlashRunner and the target device.
Care must be taken when programming Code Flash, User Boot Area and Data Flash because
of the following two options:

#TCSETPAR FILL_CODE_FLASH <YES/NO>

#TCSETPAR FILL_DATA_FLASH <YES/NO>

They default to NO and determine whether the holes on the source file should be also
programmed with blank value (0xFF) or corresponding memory locations have to be left in
erased state. It makes difference because of the ECC calculation.
User should be aware of that.

• VERIFY READOUT
This command checks that data contained in the memory of the device corresponds to FRB
data.

Supported memories for this command are:
- Code Flash [F] Both Flash Technologies

- Data Flash [E] Both Flash Technologies
- User Boot Area [U] Both Flash Technologies
- Option Bytes [O] RV40F Flash Technology
- Configuration Setting Area [A] RV28F Flash Technology

- Security Setting Area [S] RV28F Flash Technology
- Extended Data Area [D] RV28F Flash Technology

Optionally, it is also possible to send two additional parameters to this command: the address
from where to start checking and the number of bytes to check (see example).

#TPCMD VERIFY F R <start_address> <size>

As above said, these parameters will be previuosly checked by the algorithm to prevent
alignment issues (granularity mismatch).

This command works exactly like the program command with the only exception that the
device reads (instead of writing) data from the memory and compares that with the data
received from FlashRunner.
Same as for programming, also when verify Code Flash, User Boot Area and Data Flash, the
following parameters will be taken into account.

#TCSETPAR FILL_CODE_FLASH <YES/NO>

#TCSETPAR FILL_DATA_FLASH <YES/NO>

• VERIFY CHECKSUM
This command asks the target device to calculate the 32-bits CRC (Cyclic

Redundancy Check) of selected memory region, meanwhile, the FlashRunner calculates

the expected 32-bits CRC according to FRB data and then the two values are compared.

Supported memories for this command are:
- Code Flash [F] Both Flash Technologies
- Data Flash [E] Both Flash Technologies
- User boot Area [U] Both Flash Technologies
- Configuration Setting Area [A] RV28F Flash Technology
- Security Setting Area [S] RV28F Flash Technology
- Extended Data Area [D] RV28F Flash Technology

On RH850/F1x, RH850/F1xx, RH850/D1x, RH850/P1x and RH850/P1xx series,
verify checksum of Data Flash [E] is available only if:

#TCSETPAR FILL_DATA_FLASH YES

Verify checksum operation is executed internally by the device and it is typically faster than
the readout method. An example of this command is provided below:

#TPCMD VERIFY F S

Optionally, it is also possible to send up to three additional parameters to this command: the
address from where to start the checksum calculation, the number of bytes to consider in the
calculation, and the expected checksum value. This will result faster because the FlashRunner
does not need to spend time for calculating the checksum of the FRB file.

#TPCMD VERIFY F S <start_address> <size> <cks>

To get the value to use as the expected checksum parameter, you can use the following
command

#TPCMD CALC_FRB_CHKSUM

which can be executed by FlashRunner without being connected to the target device because
it is just an internal calculation and it will return the commands to use in the real-
time log.

We also have an additional feature about checksum: some customers requested to return the
checksum of the data when performing the verify checksum command and we gave them the
possibility to enable this feature by manually setting the following parameter.

#TCSETPAR PRINT_CHKSUM_ON_VERIFY YES

This parameter does not give any benefits in terms of performance, in fact, this feature aims to give
additional feedback to the customer’s application which can verify that FlashRunner is working with
the expected data. For example, running a project which has the checksum print enabled, the
FlashRunner will return the following string on Terminal when executing the verify checksum:

Note: the algorithm used to calculate the 32-bit CRC is the one defined by Renesas.

After this explanation should be clear what can be improved by the user, what can be improved by
SMH, and what cannot be improved because it depends only on the characteristics of the target
device.

Warning: performing the program and verify commands using an FRB which does not contain any
data for the selected memory region will return pass. The driver has been designed in this way to be
more flexible so, basically, if a customer gives no data to program and verify, then the driver does not
perform any operation and it just returns pass after completing the research for the data.

4. Option Bytes

All RH850 devices (both RV40F and RV28F Flash Technologies) have a set of non-volatile registers
where boot relevant data are taken from and loaded into corresponding volatile registers once the
reset is released. They are known as Option Bytes (OPBT).

RV40F flash technology

There are a couple of ways to program Option Bytes.
The easiest one is to choose from Project Wizard the following additional command:

Once selected the following command will be added to the project:

#TPCMD OPBT 0xFFFF8FBF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

The above command will program and verify OPBT0-OPBT7 interval of any of
RV40F Flash Technology devices.

NOTE: On devices with ICU-M, if it is enabled, verify will be skipped by the algorithm and verify
should be done separately being aware that some of them will be read as 0s due brecause of the
ICU-M itself.

In case Option Bytes should be dynamically programmed (or traditionally programmed) we have
reserved a region on device’s memory map whose size is 32 bytes (that is, 8 x 4B, given 4B as

OPBT size in bytes).

Note that Start Address of such memory region doesn’t correspond to actual address of device’s
Option Bytes so we can state that it is “virtual”.

Once data being placed in that region they will be programmed by using:

#TPCMD PROGRAM O or #TPCMD PROGRAM O <start_address> <size>

Be careful of data endianness, data of each OPBT must be input in little endian order (i.e to program
0xFFFF8FBF the stream should be 0xBF 0x8F 0xFF 0xFF)

RV28F flash technology

On RH850/U2A series devices Option Bytes must be programmed normally using:

#TPCMD PROGRAM A or #TPCMD PROGRAM A <start_address> <size>

since they effectively belong to Configuration Setting Area [A].

5. Extended Option Bytes

Some RH850 devices series with RV40F Flash Technology also have an additional set of
Option Bytes which can be programmed (and in some cases, also verified).
They are known as Extended Option Bytes (XOPBT) and there are a couple of ways to program

them.

Caution: Since the Extended Option Bytes contain important settings for the MCU, take care with the
data to be programmed if perform this operation. Don’t use this option unless you have a particular
reason to do otherwise.

The easiest way is to choose from Project Wizard the following additional command:

According to the RH850 series the above command will program:

1) [OPBT8] Standard RH850 with ICU-S (Intelligent Cryptographic Unit)

2) [OPBT8-OPBT12] Standard RH850 with ICU-M (Intelligent Cryptographic Unit)

3) [OPBT8-OPBT15] Custom RH850, such as P1xC series devices

Once selected the following command will be added to the project (in following example we will
consider OPBT8):

#TPCMD XOPBT 0xAABBCCDD

With the above approach, verify of Extended Option Bytes is, at this moment, not performed within
this additional command.

In case Extended Option Bytes should be dynamically programmed (or traditionally programmed)
we have reserved a region on device’s memory map whose size is:

1) 4 bytes (that is, 1 x 4B, given 4B as an OPBT size) for devices with ICU-S.

2) 20 bytes (that is, 5 x 4B, given 4B as an OPBT size) for devices with ICU-M.

3) 32 bytes (that is, 8 x 4B, given 4B as an OPBT size) for P1xC series devices.

Note that Start Address of such memory region doesn’t correspond to actual address of device’s
Extended Option Bytes so we can state that it is “virtual”.

Be careful of data endianness, data of each OPBT must be input in little endian order (i.e to program
0xAABBCCDD the stream should be 0xDD 0xCC 0xBB 0xAA)

Once data being placed in that region they will be programmed using the following command:

#TPCMD PROGRAM O or #TPCMD PROGRAM O <start_address> <size>

Where allowed it is also possible to verify the Extended Option Bytes using the following command:

#TPCMD VERIFY O R or #TPCMD VERIFY O R <start_addr> <size>

6. Security Management

RV40F flash technology

As above mentioned, according to RH850 series name, there are two different kinds of devices:

• Standard devices (F1x, F1xx, P1x, P1xx, R1x)

• Custom devices (P1xC)

In Standard RH850 devices Security Management involves a couple of 16 bytes keys [IDCODE].
In Custom RH850 devices Security Management involves a couple of three 32 bytes each keys

[IDCODE, CFPEID, DFPEID].

The above approach allows dynamic management of passwords (i.e. CODES) by using DYNAMIC
MEMORY. In fact similarly to Option Bytes Management also for Security Management there is

a “virtual” memory area named P that is suitable for entering Authentication Codes (if
required) and setting Security Codes (if needed).

Dedicated memory area address ranges differ between Standard and Custom devices.

For Standard RH850 devices, 2 regions are available:

1) 16 bytes for Authentication Code when serial programming is protected:

2) 16 bytes for storing Security Code to be used whenever the following command has
to be performed.

#TPCMD SET_SECURITY_CODE <A|C>

A = Authentication protection mode
C = Command protection mode

It is also possible to prevent Erase, Write and Read commands to be executed once protection
being enabled through the following command:

#TPCMD PROTECT R W E

R = Read protection

W = Write protection

E = Erase protection

Caution: Once any of the functions for disabling commands has been set for an MCU, some of the
security settings cannot be reversed.
To reverse the security settings for the MCU, select #TPCMD UNPROTECT to clear the flash
options.

For Custom RH850 devices, 2 regions are also available:

1) 96 bytes for Authentication Codes when Serial Programming is protected:

This region is further composed into the following fields:

IDCODE (32 bytes) CFPEID (32 bytes) DFPEID (32 bytes)

[0xE000000 : 0xE00001F] [0xE000020 : 0xE00003F] [0xE000040 : 0xE00005F]

2) 96 bytes for storing Security Codes whenever the following command has to be
performed.

#TPCMD SET_SECURITY_CODE <A|C>

This region is further composed into the following fields:

IDCODE (32 bytes) CFPEID (32 bytes) DFPEID (32 bytes)

[0xE000060 : 0xE00007F] [0xE000080 : 0xE00009F] [0xE0000A0 : 0xE0000BF]

If Authentication is required on “programming entry” and no Authentication Codes have been
given an all 0xFFs code will be used by default.

If Authentication Codes and Security Codes are not defined inside a source file setup a variable data
area on related regions by using DYNMEMSET command.

RV28F flash technology

Differently from RV40F flash technology devices those group of devices have several
IDCODE values that are used to protect different storage areas from Erase and Write operations.
Programming desired IDCODE is very simple because you just have to program security related data
on Security Settings Area through

#TPCMD PROGRAM S

Similarly to RV40F Flash Technology group of devices there is a “virtual” memory region named
P that is suitable for entering Authentication Codes (if required by programming flow). One

256 bytes region is available (the one for unlocking locked features) and it is mapped as follows:

The following table links each memory entry to its corresponding ID CODE.

7 [0xE000000 – 0xE00001F] ID Code

8 [0xE000020 – 0xE00003F] Data Flash ID

9 [0xE000040 – 0xE00005F] Customer ID A

10 [0xE000060 – 0xE00007F] Customer ID B

11 [0xE000080 – 0xE00009F] Customer ID C

12 [0xE0000A0 – 0xE0000BF] OCD ID

13 [0xE0000C0 – 0xE0000DF] RHSFIF ID

14 [0xE0000E0 – 0xE0000FF] C-TEST ID

If no ID code has been provided for authentication an all 0xFFs code will be used by default.
When other authentication codes are not set, related authentication command will be skipped by the
algorithm.

7. ICU-S Management

The ICU_S is a region of Data Flash [E] available on some RH850 devices with RV40F Flash
Technology.

This ICU_S region size is device dependant:

• Size 0KB -> Not present
• Size 1KB -> ICU Region area is last 1KB of Data Flash
• Size 2KB -> ICU Region area is last 2KB of Data Flash

The ICU_S region can be in Enabled or Disabled state, use

#TPCMD CHECK_ICU_S

command for retrieving status information.

The ICU_S region can be Activated by performing

#TPCMD VALIDATE_ICU_S

Power on Reset (PoR) is necessary in order activation to be effective.

Furthermore ICU-S region of Data Flash must be programmed with all 0xFFs (or random data)
before this command to be executed (i.e. it shouldn’t be in erased state).

The ICU_S region can be Deactivated performing

#TPCMD UNPROTECT

NOTE: Only for RH850/F1K series, once ICU_S has been enabled, it's no longer possible to use
UNPROTECT command. This is because ICU_S Erase internal command is not supported
anymore by Renesas.

If ICU_S region is enabled, it cannot be programmed anymore, unless erased and disabled.

In those cases #TPCMD UNPROTECT before #TPCMD PROGRAM E is mandatory. (Except
RH850/F1K Family)

8. Block Erase

It is also possible to partially erase the target device’s memory by using the following command:

#TPCMD BLOCK_ERASE <mem_type> <start_address> <size>

start_address and size parameters should be given so that they are block aligned.

Next example hopefully will clarify that.

We want to erase only the Code Flash blocks 5 to 12.

According to what we have above stated the corresponding FlashRunning command would then be:

#TPCMD BLOCK_ERASE F 0xA000 0x2E000

