

AN00148: Using FlashRunner
Dynamic Memory to
Perform Serial Numbering,
Calibration and Device
Protection

by Nicola Ciot (nicola.ciot@smh-tech.com)

The FlashRunner dynamic memory is a built-in 512-byte memory area
available in some FlashRunner models. This memory is used to store
temporary data to be written to/read from the target device memory.
When the instrument is powered off, the data contained in this memory is
lost. The dynamic memory is typically used to:

 Mark the Unit Under Test (UUT) with a serial number or ID code;

 Program the target device memory with UUT calibration data;

 Protect the target device from unauthorized reading.

1. Dynamic Memory Commands

Typical dynamic memory operations are performed through the following
FlashRunner commands:

 DMSET (to fill the dynamic memory with the data to be programmed
to the target device);

 TPSETSRC DYNAMIC (to set the dynamic memory as a source of
data of subsequent programming commands);

 TPCMD PROGRAM (to program the target device memory);

 TPCMD VERIFY (to verify the target device memory).

Please refer to the FlashRunner’s programmer’s manual for detailed
information about these commands.

Copyright © 2008 SMH Technologies, S.r.l.
SMH Technologies is the licensee of the SofTec
Microsystems trademark.
Revision 1.0 – July 2008

E-mail (general information): info@smh-tech.com
E-mail (technical support): support@smh-tech.com
Web: http://www.smh-tech.com
Important
SMH Technologies reserves the right to make improvements to its products, their documentation and software routines, without notice. Information in
this manual is intended to be accurate and reliable. However, SMH Technologies assumes no responsibility for its use; nor for any infringements of
rights of third parties which may result from its use.

DC10050
SMH TECHNOLOGIES WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR
INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

Using FlashRunner Dynamic Memory to Perform Serial Numbering, Calibration and Device Protection

2. Application A: Serial Numbering

This application is quite common, and consists in marking each UUT with
a progressive serial number or code, stored inside the target device
memory. An ID code could contain, for example, information about:

 Production batch;

 Programming or production date and hour;

 Product model or version;

 MAC address for products that include an Ethernet peripheral.

This information allows any UUT to be traced during the production flow
and, most importantly, after it has been sold.

The flowchart below illustrates how to use FlashRunner for programming
a serial number or ID code.

Note: since a serial number or ID code is a UUT-specific value (which
changes from one unit to the other), it cannot be included in a script file,
but must be sent to FlashRunner by the host PC.

FlashRunner
SCRIPT
FILE #2

FlashRunner
SCRIPT
FILE #1

LOAD AND PROGRAM
THE DYNAMIC MEMORY

CONTENT

EXAMPLE:

SERIAL NUMBER: 5847

DMSET $0000 2 $58 $47

TPSTART

TPSETSRC DYNAMIC
TPCMD PROGRAM F $0000 $xxxx 2
TPCMD VERIFY F $0000 $xxxx 2

TPEND

HOST
PC/ATE

HOST
PC/ATE GENERATE A SERIAL

NUMBER

SEND THE SERIAL
NUMBER TO THE

DYNAMIC MEMORY OF
FlashRunner

PROGRAM THE
FIRMWARE

FUNCTIONAL TEST

END

Page 2

Using FlashRunner Dynamic Memory to Perform Serial Numbering, Calibration and Device Protection

3. Application B: Calibration

The second way to use the dynamic memory is for storing some
calibration values after the UUT has been tested. These values can be
derived from a parametric test performed on components that require a
fine trimming. These values are different from board to board.

As an example, the dynamic memory is useful to program the offset of
sensors mounted on the UUT, after they are calibrated by the in-circuit
test. Below is an example of a flow chart for the calibration process using
FlashRunner.

Note: since a calibration value is a UUT-specific value (which changes
from one unit to the other), it cannot be included in a script file, but must
be sent to FlashRunner by the host PC.

FlashRunner
SCRIPT
FILE

HOST
PC/ATE FUNCTIONAL

TEST

PROGRAM THE
OPERATING FIRMWARE

END

EXAMPLE:

OFFSET = $55

DMSET $0000 1 $55

TPSTART
TPSETSRC <Operating Firmware>
TPCMD PROGRAM ...
...

TPSETSRC DYNAMIC
TPCMD PROGRAM F $0000 $xxxx 1
TPCMD VERIFY F $0000 $xxxx 1

TPEND

LOAD AND PROGRAM
THE OFFSET FROM THE

Dynamic Memory

HOST
PC/ATE IN-CIRCUIT TEST

SEND OFFSET TO
FlashRunner

FUNCTIONAL
TEST

PASSED?

YES

NO
BOARD

REJECTED

Page 3

Using FlashRunner Dynamic Memory to Perform Serial Numbering, Calibration and Device Protection

4. Application C: Device Protection

Some MCUs can be protected against unauthorized reading or accidental
re-programming by a byte or a series of bytes (referred to as a password,
or “protection bytes”) to be programmed to their the Flash or EEPROM
memory. Usually, device protection is performed only after the
programming and testing of the firmware has ended successfully.

In this application the dynamic memory will store the protection bytes
values and the process flow chart is similar to what outlined in the figure
below.

FlashRunner
SCRIPT
FILE #1

FlashRunner
SCRIPT
FILE #2

HOST
PC/ATE

PROGRAM THE
FIRMWARE

FUNCTIONAL
TEST

END

EXAMPLE:

DMSET $0000 1 $FE

TPSTART
TPSETSRC <Operating Firmware>
TPCMD PROGRAM ...
...

TPSETSRC DYNAMIC
TPCMD PROGRAM F $0000 <security add> 1
TPCMD VERIFY F $0000 <security add> 1

TPEND

PROGRAM THE
SECURITY BYTES

TEST
PASSED?

YES

HOST
PC/ATE

SET THE SECURITY
BYTES VALUES

NO
BOARD

REJECTED

Page 4

	AN00148: Using FlashRunner Dynamic Memory to Perform Serial
	Dynamic Memory Commands
	Application A: Serial Numbering
	Application B: Calibration
	Application C: Device Protection

