
FlashRunner Cube Series
User’s Manual

DC10476

FlashRunner
Cube Series

User’s Manual
Revision. 1.3 - April 2012

True parallel panel target
standalone in-system

programmer

Copyright Information
Copyright © 2011-2012 Systein Srl.
No part of this manual may be reproduced in any form or by any means (including electronic
storage and retrieval or translation into a foreign language) without prior agreement and written
consent from Systein.

Disclaimer
The material contained in this document is provided “as is”, and is subject to being changed,
without notice, in future editions. Further, to the maximum extent permitted by applicable law,
Systein disclaims all warranties, either express or implied, with regard to this manual and any
information contained herein, including but not limited to the implied warranties of merchantability
and fitness for a particular purpose. Systein shall not be liable for errors or for incidental or
consequential damages in connection with the furnishing, use, or performance of this document
or of any information contained herein. Should Systein and the user have a separate written
agreement with warranty terms covering the material in this document that conflict with these
terms, the warranty terms in the separate agreement shall control.
Whilst every effort has been made to ensure that programming algorithms are correct at the time
of their release, it is always possible that programming problems may be encountered, especially
when new devices and their associated algorithms are initially released. It is Systein’s policy to
endeavor to rectify any programming issues as quickly as possible after a validated fault report
is received.
It is recommended that high-volume users always validate that a sample of a devices has been
programmed correctly, before programming a large batch. Systein can not be held responsible
for any third party claims which arise out of the use of this programmer including ‘consequential
loss’ and ‘loss of profit’.

Systein Warranty Information
Systein warrants that this product will be free from defects in materials and workmanship
for a period of one (1) year from the date of shipment. If any such product proves defective
during this warranty period, Systein, at its option, either will repair the defective product without
charge for parts and labor, or will provide a replacement in exchange for the defective product.
Parts, modules and replacement products used by Systein for warranty work may be new or
reconditioned to like new performance. All replaced parts, modules and products become the
property of Systein. In order to obtain service under this warranty, Customer must notify Systein
of the defect before the expiration of the warranty period and make suitable arrangements for the
performance of service. Customer shall be responsible for packaging and shipping the defective
product to the service center designated by Systein, with shipping charges prepaid. Systein
shall pay for the return of the product to Customer if the shipment is to a location within the
country in which the Systein service center is located. Customer shall be responsible for paying
all shipping charges, duties, taxes, and any other charges for products returned to any other
locations. This warranty shall not apply to any defect, failure or damage caused by improper
use or improper or inadequate maintenance and care. Systein shall not be obligated to furnish
service under this warranty a) to repair damage resulting from attempts by personnel other than
Systein representatives to install, repair or service the product; b) to repair damage resulting from
improper use or connection to incompatible equipment; c) to repair any damage or malfunction
caused by the use of non-Systein supplies; or d) to service a product that has been modified or
integrated with other products when the effect of such modification or integration increases the
time or difficulty of servicing the product.
THIS WARRANTY IS GIVEN BY SYSTEIN WITH RESPECT TO THE PRODUCT IN LIEU OF
ANY OTHER WARRANTIES, EXPRESS OR IMPLIED. SYSTEIN AND ITS VENDORS DISCLAIM
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. SYSTEIN’ RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS
IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF
THIS WARRANTY. SYSTEIN AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER
SYSTEIN OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGES.

Technical Support
Please e-mail any technical support questions about this product to: support@smh-tech.com.

Table of Contents

Table of Contents

1. FR CUBE—At a Glance .. 9

Overview ...9

Features ...10

Model Comparison ..11

Package Checklist ...12

Connectors Overview ..12

LEDs ...13

Programming Drivers and Licenses ...14

2. Getting Started ... 15

Guided Tutorial ...15

1. Install Software ...15

2. Launch the Project Generator ..15

3. Create a New Project ..16

4. Create a New Project, Step 1 of 316

5. Create a New Project, Step 2 of 317

6. Create a New Project, Step 3 of 321

7. Configure your FR CUBE Instrument22

2 Where to Go from Here ...25

3. Commands ... 27

Overview ..27

FlashRunner Cube User’s Manual

Command Syntax ..28

OK Answer ...28

ERR Answer ...28

BUSY Answer ..28

FR CUBE Terminal ..29

Command Reference ..29

Data In/Out Commands ..30

Execution Command ...31

File System Commands ..32

Programming Commands ..33

Status Commands ...34

System Commands ...36

Time Commands ...37

Volatile Memory Commands ...38

4. Standalone Mode ... 39
Overview ..39

Signals ..39

Project Assignment ..41

5. FR CUBE API .. 43
Overview ..43

Including the API in Your Application ...43

Function Reference ..45

FR_CloseCommPort() ...45

FR_Ex eCommand() ..46

FR_GetFrame() ...47

Table of Contents

FR_GetLastErrorMessage() ...48

FR_ReceiveFile() ...49

FR_SendFile() ...50

FR_SendFrame() ..51

FR_OpenCommPort() ..52

6. FR CUBE File System ... 53
Overview ..53

File System Structure ..54

7. Variable Data Programming ... 55
Overview ..55

Usage ..55

8. Power and Relay Options .. 57
Power Supply Options ..57

Relays ...57

9. Connectors ... 59
ISP Connectors ..59

Low-Level Interface Connector ..61

Ground Domains ..62

10. Specifications ... 63
Electrical Specifications ..63

ISP Connectors ..64

Mechanical Specifications ...64

FlashRunner Cube User’s Manual

Index of Figures
Low-Level Interface Signals Timing ...40

FRC_GP_02 ISP Connectors ...59

FRC_GP_04 ISP Connectors ...59

FRC_GP_08 ISP Connectors ...59

Index of Tables
FR CUBE Model Comparison ..11

ISP Signal Definitions ...60

Low-Level Interface Signals ...61

ATE and Target Ground Domains ...62

FlashRunner Cube User’s Manual

9

11. FR CUBE-At a Glance

Overview
Congratulations for purchasing a FR CUBE In-System Programmer.
The FR CUBE Series of In-System Programmers are a breakthrough in
the Programming industry. The programmers support a large number of
devices (microcontrollers, memories, CPLDs and other programmable
devices) from various manufacturers and have a compact size for easy ATE/
fixture integration. They work in standalone or connected to a host PC (RS-
232, LAN and USB connections are built-in), and are provided with easy-to-
use software utilities

.

FR CUBE-At a Glance

10

1 Features
Support of microcontrollers, serial and parallel memories, CPLDs
and other programmable devices
High-speed, parallel programming
Compact size (fixture friendly)
Standalone operations or host controlled
Designed for easy ATE interfacing
Robust and reliable
Support of several programming interfaces (JTAG, BDM, SPI, I2C,
UART, etc.)
Large built-in internal memory for projects, images, etc.
Programmable power supply output (1.5-13V)
Programmable I/O voltage (1.6-5.5V)
High-speed I/O
USB, LAN (isolated), RS-232 (isolated) and low-level interface (isolated)
ISP I/O relay barrier (only available on the single-site model)
I/O protection
Wide range power supply (12-24V)

The shortest possible programming times are guaranteed due to a
combination of highly optimized programming algorithms, local storage of
programming data and high slew rate line driver circuitry.

FlashRunner Cube User’s Manual

11

1Model Comparison
The following table summarizes the main features of the various FR CUBE
family models.

FR CUBE Model Comparison

Feature FR CUBE GP02 FR CUBE GP04 FR CUBE GP08

General Features
Programming Sites 2 4 8
Power Supply 12-24V 12-24V 12-24V

Device Type Support
Microcontrollers,

CPLDs, Serial
Memories

Microcontrollers,
CPLDs, Serial

Memories

Microcontrollers,
CPLDs, Serial

Memories, Parallel
Memories

Programming
Protocols

UART, SPI, JTAG,
I2C, BDM, SWD,

etc.

UART, SPI, JTAG,
I2C, BDM, SWD,

etc.

UART, SPI, JTAG,
I2C, BDM, SWD,

etc.

Relay Barrier No No No

ISP Lines

Adj. Voltage Range 1.6-5.5V 1.6-5.5V 1.6-5.5V
Adj. Voltage Resolution 100mV 100mV 100mV
Bidirectional Lines 12 24 48
Prog. Clock Out Lines 2 4 8

Programmable Power Supply (PPS)

Range 1.5-15V 1.5-15V 1.5-15V
Resolution 100mV 100mV 100mV
Channels 2 4 8

Host Interface

RS-232 (Isolated) Yes Yes Yes
LAN (Isolated) Yes, 100Mbit/s Yes, 100Mbit/s Yes, 100Mbit/s
USB Yes, Full Speed Yes, Full Speed Yes, Full Speed

Low-Level Interface
(Isolated)

START,
START_ENA[1..2],
PASS/FAULT[1..2],

BUSY, PRJ_SEL[0..5]

START,
START_ENA[1..4],
PASS/FAULT[1..4],

BUSY, PRJ_SEL[0..5]

START,
START_ENA[1..8],
PASS/FAULT[1..8],

BUSY, PRJ_SEL[0..5]

FR CUBE-At a Glance

12

1 Package Checklist
The FR CUBE package includes the following items:

1. FR CUBE unit.
2. 15V power supply.
3. Serial and USB cables.
4. FR CUBE test board.
5. 48-way, female wire-wrap DIN41612 connector.
6. Software CD.

Connectors Overview
FR CUBE has several connectors for interfacing to a host PC, to an
Automatic Test Equipment (ATE), and to the target system(s) to be
programmed. The following pictures show where, depending on the model,
the various connectors are located.

FR CUBE GP 02/04 FR CUBE GP 08

1. The POWER connector accepts a DC voltage between 12V and 24V.
2. The USB connector, LAN, and RS-232 connectors are used to

interface the instrument to a PC.
3. The ETH RESET push button is used to reset LAN settings to their

factory settings.
4. The ISP connector(s) are used to interface to the target system(s) to

be programmed.
5. The LOW-LEVEL INTERFACE connector is used to interface

the instrument to an ATE or other systems.

FlashRunner Cube User’s Manual

13

1For details and pinout of the various connectors, see the “Connectors”
chapter on page 59.

LEDs
The LEDs on the top cover of the instrument, from top to bottom, indicate:

1. POWER: the instrument is turned on.
2. STATUS: indicates system warnings. Normally off, blinks if the
 system needs user action (to retrieve detailed error information,
 see “Status Commands” on page 34)
3. BUSY: turns on when programming (when a programming
 project is being executed).
4. PASS/FAULT: result of programming. Each programming site has an
 PASS/FAULT LED, which turns green if programming on that site has
 been successful, red otherwise.

FR CUBE GP02 LEDs FR CUBE GP04 LEDs FR CUBE GP08 LEDs

S1 PASS FAULT

FAULT

BUSY

STATUS

PWR ON

S2 PASS

S1 PASS FAULT

FAULT

FAULT

FAULT

BUSY

STATUS

PWR ON

S2 PASS

S3 PASS

S4 PASS

S1 PASS FAULT

FAULT

FAULT

FAULT

FAULT

FAULT

FAULT

FAULT

BUSY

STATUS

PWR ON

S2 PASS

S3 PASS

S4 PASS

S5 PASS

S6 PASS

S7 PASS

S8 PASS

FR CUBE-At a Glance

14

1 Programming Drivers and Licenses
FR CUBE comes with preinstalled programming drivers (algorithms) that
support common microcontrollers and memories. When you purchase a
new programming driver, you are supplied with a new driver file (.wnd) and
an updated license file (.wnl). The license file enables the use of all of your
purchased drivers on your specific FR CUBE unit.
You must copy these files to the unit’s internal memory: the driver file must be
copied to the unit’s \drivers folder, and the license file to the unit’s \sys folder.
Please refer to “FR CUBE File System” on page 53 for more information.

FlashRunner Cube User’s Manual

2

15

2. Getting Started

Guided Tutorial
The following tutorial will guide you through the steps required to set up
your FR CUBE programmer and create your first programming project.

1. Install Software
 Insert the Setup CD into your PC and install the FR CUBE
 software.

2. Launch the Project Generator
 Launch the Project Generator application, that is located under
 Programs > Systein > FR CUBE Software > Project Generator.

Getting Started

2

16

3. Create a New Project
 Select File > New Project, give a name to your programming
 project, and then follow the Project Creation Wizard steps.

4. Create a New Project, Step 1 of 3
 In the first Wizard step, specify the target device, by clicking the
 “Edit” button.

 Next, specify the file to be programmed (image file). To create an
 image file, click the “Create/Edit File” button. A dedicated
 window will open.

FlashRunner Cube User’s Manual

2

17

 In the Output File section, specify the output filename by clicking
 the “...” button.
 Use the “Add” button to compose the data that will compose the
 Image file. Use the “...” button to specify the name of the Image
 file. When done, click “OK” to return to the Wizard, and proceed
 to Step 2.

5. Create a New Project, Step 2 of 3
 In this step, specify target parameters and connection values. The
 Wizard will automatically fill all data with typical values for the
 selected target device.

Getting Started

2

18

The number of tabs displayed in this window depends on the selected
target device; however, three tabs (“Target I/O”, “Target Power Supply”
and “Communication”) are always present and will be briefly discussed
below.
The first tab is “Target I/O”. The “Device I/O voltage” setting specifies
the voltage of the ISP lines. You should check the target board schematics,
or ask the board developer about this value. The allowed voltage also
depends on the selected target device.
The “Clock I/O drive mode” setting allows you to decide how the SxL04
ISP line is driven (the x index refers to the programming site; see “ISP
Connectors” on page 59). This line can be used as an auxiliary ISP line (to
provide a clock to the target device), as a generic I/O line, or as a high-
impedance output (no electrical driving). When used as output line (set to
high or low), it could be used, for example, to disable the external watchdog
circuit in the target board. When used as clock out, you can specify the
output frequency in the “Clock I/O frequency” field. We suggest leaving
this line floating (HiZ) when not used, in order to decrease electrical noise on
other ISP lines.

FlashRunner Cube User’s Manual

2

19

If you decide to power the target board through the FR CUBE power supply
line (SxPPS), specify in the “Target Power Supply” tab the electrical and
timing parameters of the target power supply line. FR CUBE is able to
power the target board through a dedicated programmable power supply
output line per site. The voltage of the programmable power supply line
(“Target power supply voltage” setting) can be in the range 1700mV
to 13000mV. Each programmable power supply line features an internal
voltage limiter that cuts the voltage output in case of short circuits or
overloads. The current output is limited to about 400mA.
The “Power up time” setting specifies the delay between the
programmable power supply line turning on and the first operation on the
ISP lines. The purpose of this parameter is to wait for the power supply to
become stable, before starting ISP programming. This parameter is useful
when large capacitors are mounted in the target board’s power line.
The “Power down time” setting acts in similar way: it sets the delay
between the programmable power supply line turning off and subsequent
operations.

Getting Started

2

20

The content of the “Communication” tab depends on the selected target
device. It allows you to select the communication protocol that will be
used for programming (some target devices may provide more than one
communication protocol) and its related settings, usually the communication
speed and other parameters. Usually, the higher the communication speed,
the shorter/better the ISP cabling must be.
After carefully checking all of the parameters values, proceed to Step 3.

FlashRunner Cube User’s Manual

2

21

6. Create a New Project, Step 3 of 3
 In this step you select which programming operation to perform
 on the target.

 Click “Finish” to end the Wizard. At this point, a FR CUBE
 Programming Project will be created in the \Projects directory,
 relative to the Project Generator application location.

Getting Started

2

22

7. Configure your FR CUBE Instrument
 Choose Project > Select FR CUBE Model, and specify your

FR CUBE model and communication settings with the PC.
 Currently, FR CUBE can be connected only through a serial port.
 FR CUBE communicates at 115,200 bps by default.
 LAN and USB connections will be supported soon through a free
 software upgrade.

FlashRunner Cube User’s Manual

2

23

8. Connect to Target Device
 Connect FR CUBE to your target system through the ISP
 connector(s). To view the connections for your selected target
 device, select Debug > Show ISP Connections.

See the table on page 60 for more details

Getting Started

2

24

9. Startup FR CUBE
 Connect FR CUBE to your PC through the provided serial cable.
 Finally, power up FR CUBE using the provided power supply.

10. Program the Target Device
 Select Debug > Run Project. The Project file (.wnp) and Image
 file (.wni) will be automatically uploaded to FR CUBE and the
 project will be executed. Your target device(s) will be
 programmed.

In case of programming errors, or to change programming parameters/
operations, you can relaunch the Project Wizard and review the project
settings.

FlashRunner Cube User’s Manual

2

25

Manual Project Editing
The Project file created by the Project Wizard is located, by default, in the
\Projects directory, relative to the Project Generator application location
(this location can be changed by specifying a different “workspace” path:
to do so, in the Project Generator, select Project > Edit Miscellaneous
Settings and modify the Workspace setting).
The generated project file is a text file and, if necessary, can be edited using
any text editor. Please note, however, that once the file is modified by the
user, it can be opened by the Project Generator but the Project Wizard will
not be available.

Where to Go from Here
In this chapter, you have learnt how to use the Project Generator to create
and execute a typical programming project. Additionally, FR CUBE can be
controlled in three other ways:

1. By manually sending commands and receiving answers, using
 the Project Generator Terminal or any other terminal application
 (for more information, see “Commands” on page 27);
2. By configuring the instrument so that it can work in standalone,
 that is without a connection to a PC (for more information, see
 “Standalone Mode” on page 39);
3. By building your own PC software that interfaces to the instrument
 (for more information, see “FR CUBE API” on page 43).

3

27

FlashRunner Cube User’s Manual

3. Commands

Overview
FR CUBE is a slave unit and is always awaiting for a new command
incoming from the master (PC).
When the programmer receives a SOF (Start Of Frame) character (#),
indicating the start of a new command, it loads all incoming characters
in a buffer until the reception of the return character (\n, ASCII code h0A).
Maximum command length is 256 characters.
After reception of the return character, the programmer interprets and
executes the received command; depending on the execution of the
received command the protocol will answers to the master in three different
ways.

1. If the command is correctly executed, the programmer answers
 with an OK frame.
2. If the command execution generates errors, the programmer
 answers with an ERR frame.
3. If the command takes long to execute, the programmer
 periodically answers with a BUSY frame, until command
 execution is over and an OK or ERR frame is answered.

All commands and answers are case-insensitive.

Commands

3

28

Command Syntax
A FR CUBE command begins with the SOF character (#), followed by the
command name, followed by zero or more command switches, and ends
with the return character (\n).
This is an example of a FR CUBE valid command:
#status -o ping{\n}

OK Answer
An OK answer is composed of zero or more characters, followed by
the > character, followed by the return character (\n).
This is an example of a FR CUBE OK answer:
pong>{\n}

ERR Answer
An ERR answer is composed of zero or more characters (usually the
hexadecimal error code), followed by the ! character, followed by the return
character (\n).
This is an example of a FR CUBE ERR answer:
h40000103!{\n}

BUSY Answer
A BUSY answer is sent by the programmer to the PC if a command take
some time to execute. A BUSY answer is sent at most every 3 seconds.
If no OK, ERR or BUSY answer is sent within 3 seconds from the last
command sent to the programmer, a communication error has probably
occurred.
A BUSY answer is composed of zero or more characters, followed by
the * character, followed by the return character (\n).
This is an example of a FR CUBE BUSY answer:
*{\n}

A valid answer always ends with two characters: >{\n}, !{\n} or
*{\n}, depending on whether an OK, ERR or BUSY frame is sent
to the host. Additional return characters (\n) may be present in
the answer, but they don’t signal the end of the answer.

3

29

FlashRunner Cube User’s Manual

FR CUBE Terminal
Commands can be sent (and answers received) using any terminal
application. For your convenience, the Project Generator application
includes a Terminal window that will simplify the communication with the
instrument. Just select Tools > FR CUBE Terminal to open the Terminal
window.

Commands

3

30

Command Reference
The following pages list all of the FR CUBE commands, grouped by
function, together with their syntax and usage examples.

Data In/Out Commands

Syntax

#data –o set –c <direction> -t file –f <filename>
#data –o set –c <direction> -t volatile

Parameters

<direction> in or out.
<filename> Filename on the instrument’s file system.

Description

Specify the source and destination of the programming data.

Examples

Sets the input image file to be programmed, and subsequently programs it:

#data -o set -c in -t file -f \images\myfile.wni
>
#prog -o cmd -c program -m flash -s h8000 -t h8000 -l h8000
>

Sets the output file to receive binary data, and subsequently reads data
from the target device:

#data -o set -c out -t file -f \images\dump.bin
>
#prog -o cmd -c read -m flash -s h8000 -t h8000 -l h8000
>

3

31

FlashRunner Cube User’s Manual

Execution Command

Syntax
#exec -o prj -f <project> -s <sites>

Parameters

<project> The Project filename to execute.
<sites> A 8 bit value indicating the programming sites to be enabled.

Description

Executes the specified Project over the specified programming sites.
In case of error, a 32 bit value is returned. This value indicates whether the
error is site-specific (bit 29 = 1) or system-specific (bit 29 = 0). If the error
is site-specific, the 8 least significant bits (bits from 7 to 0) signal whether
programming in the corresponding programming site (bit 7 = programming
site 8, bit 0 = programming site 1) was successful (bit = 0) or not (bit = 1).
To retrieve error messages, use the #status –o get -p err -v <site> -l <errlevel>
command, where <site> is 1 to 8 to retrieve a specific programming site
error, or 0 to retrieve a system error. <errlevel> is the error detail information
that is returned and can be 1, 2, 3.

Examples

Executes the Project “myprj.wnp” on programming sites 1, 2, 3, 4:

#exec –o prj –f \projects\myprj.wnp -s h0f
h20000003!

In this case, the returned error indicates that there are site-specific errors
(bit 29 = 1) and that the sites where errors occurred are sites 1 and 2.
To retrieve detailed error information about site 1, for example, the following
command can be sent:

#status –o get -p err -v 1 -l 2
h5000001,23,”Error: Timeout occurred”
>

The answers indicates that Project line 23 issued a h5000001 error, and the
text between quotes explains the error.

Commands

3

32

File System Commands

Syntax

#fs –o rmdir –d <directory>
#fs –o mkdir –d <directory>
#fs –o dir –d <directory>
#fs –o del –f <filename>
#fs –o send –d <filename>
#fs –o receive –d <filename>

Parameters

<directory> Full path of a directory.
<filename> Full path of a filename.

Description

Allow to perform various operations on the programmer’s file system.

Examples

Shows the contents of the programmer’s root directory:

#fs –o dir –d \
2010/06/21 16:35:06 [DIR] projects
2010/06/21 16:35:16 [DIR] sys
2010/06/21 16:35:20 [DIR] images
2010/06/21 16:35:26 [DIR] drivers
>

3

33

FlashRunner Cube User’s Manual

Programming Commands

Syntax

#load –l <driver> -m <manufacturer> -d <device>
#dev –o begin
#dev –o end
#dev –o set –p <parameter> -v <value>
#conf –o begin
#conf –o end
#conf –o set –p <parameter> -v <value>
#prog –o begin
#prog –o end
#prog –o cmd –c pps -v <pps value>
#prog –o cmd –c connect
#prog –o cmd –c disconnect
#prog –o cmd –c unprotect
#prog –o cmd –c erase –m <mem type> -t <tgt addr> -l <len>
#prog –o cmd –c blankcheck –m <mem type> -t <tgt addr> -l <len>
#prog –o cmd –c program –m <mem type> -s <src addr> -t <tgt addr> -l <len>
#prog –o cmd –c verify –v <ver mode> –m <mem type> -t <tgt addr> -l <len>
#prog –o cmd –c read –m <mem type> -s <dst addr> -t <tgt addr> -l <len>

Parameters

<driver> Filename of the .wnd driver.
<manufacturer> Target device’s silicon manufacturer.
<device> Target device code.
<parameter> Target parameter to set.
<value> Value of the corresponding parameter.
<pps value> on or off.
<mem type> Target memory type.
<tgt addr> Target start address.
<len> Data length.
<src addr> Source (buffer) start address.
<ver mode> Verify mode: read or chks.
<dst addr> Destination start address.

Description

Perform various programming settings and operations on the target device.

Commands

3

34

Status Commands

Syntax

#status –o ping
#status –o get –p err –v <site> –l <errlevel>

Parameters

<site> 1 to 8 to get programming site errors. Use 0 to return system errors.
<errlevel> 1 to 3.

Description

Get instrument status or error information.
When retrieving error information, one or more error lines (depending on
the <errlevel> parameter) are returned. Each line begins with a 32-bit code,
which codifies the following information:

Bit 31: Reserved
Bit 30: If 1, an error message in text format is available.
Bit 29: If 1, the error is programming site specific.
Bit 28: If 1, the error is driver (programming algorithm) specific.
Bit 27: If 1, the error is a system fatal error.
Bits 26 to 24: Reserved.
Bits 23 to 0: Error code. If bit 29 is 1, then bits 7 to 0 signal whether

programming in the corresponding programming site (bit
7 = programming site 8, bit 0 = programming site 1) was
successful (bit = 0) or not (bit = 1).

3

35

FlashRunner Cube User’s Manual

Examples

Pings the instrument to check if communication is OK:

#status –o ping
pong>

Retrieves the last generated errors, on programming site 1, with different
error levels:

#status -o get -p err -v 1 -l 1
H50000023
>
#status -o get -p err -v 1 -l 2
H50000023,71,”Connection Error.”
>
#status -o get -p err -v 1 -l 3
H50000023,71,”Connection Error.”,”algo_api”,337
H10000000,71,””,”st701_cmds”,432
H10000000,71,””,”st701_entry”,287
H10000000,71,””,”st701_icc”,208
H10000001,71,””,”hal_icc1”,144

>

Commands

3

36

System Commands

Syntax

#sys –o set –p br –v <baud rate>
#sys –o get –p br
#sys –o get –p sn
#sys –o get –p ver –v <code>
#sys –o set –p lliop –s <prj sel> -f <prj filename>
#sys –o get –p lliop –s <prj sel>

Parameters

<baud rate> 9600, 19200, 38400, 57600, 115200, or 230400.
<code> sys or driver.
<prj sel> Project number, as selected by the PRJ_SEL[5..0] lines

on the Low-Level Interface connector.
<prj filename> Project file associated to <the prj sel> setting.

Description

Set or get instrument’s internal parameters.

Examples

Sets a new serial baud rate:

#sys -o set –p br –v 115200
>

Retrieves the instrument’s serial number:

#sys -o get -p sn
00100>

Associates the project test.wnp to the project number 1:

#sys –o set –p lliop –s 1 -f \projects\test.wnp
>

3

37

FlashRunner Cube User’s Manual

Time Commands

Syntax

#time –o set –p date –d <date>
#time –o set –p time –d <time>
#time –o get –p date
#time –o get –p time

Parameters

<date> A date in the format yyyy/mm/dd.
<time> A time in the format hh:mm:ss.

Description

Set or get the instrument’s date and time. Once set, the date and time are
maintained even when the instrument is powered off.

Examples

Sets the date/time to February 1st, 2011, at noon:

#time –o set –p date –d 2011/02/01
>
#time –o set –p time –d 12:00:00
>

Retrieves the instrument’s date and time:

#time –o get –p date
2011/02/01>
#time –o get –p time
12:02:05>

Commands

3

38

Volatile Memory Commands

Syntax

#volatile –o write –s <site> -a <start address> - l <len> -d <data>
#volatile –o read –s <site> -a <start address> - l <len>

Parameters

<site> Programming site. 1 to 8 to set specific site data, 0 to set
the same data for all sites.

<start address> Volatile memory starting address.
<len> Data length.
<data> A data array.

Description

Read and write data from/to the instrument’s volatile memory.

Examples

Uses the volatile memory on site 1 to store the target board’s MAC address:

#volatile –o write –s 1 -a h0 -l 6 -d [h00 h90 h96 h90 h48 h85]
>

Retrieves data from site 1 volatile memory:

#volatile -o read -s 1 -a h0 -l 6
1,[h00 h90 h96 h90 h48 h85]>

4

39

FlashRunner Cube User’s Manual

4. Standalone Mode

Overview
FR CUBE can work with no connection to a PC (standalone mode).
In standalone mode, the instrument is controlled through a low-level
connection interface.

Signals
Signals needed to control the instrument in standalone mode are located
in the “Low-Level Interface” connector (see “Connectors” on page 59 for
the connector pinout on the various FR CUBE models) and are explained
below.

Signal level is 0-5V. All lines are isolated (referenced to GNDI).

PRJ_SELx lines (input): Define which project to execute (see
 “Project Assignment” later on this
 chapter).
START_ENAx lines (input): Select which programming site(s) to enable.

Active low.
START line (input): Executes the project specified by
 PRJ_SELx lines on the programming
 site(s) enabled by START_ENAx lines.
 Active low.
BUSY line (output): Indicates that a project is being executed.
 Active high.
PASS/FAULTx lines (output): Valid at the end of project execution (when

BUSY is low). Indicate, for each programming
site(s), the success state of the programming
project. (OK = high, ERR = low).

Standalone Mode

4

40

The following diagram illustrates the timing for the Low-Level Interface signals.

PRJ_SELx

START_ENAx

START

BUSY

OK/ERRx

PRJ_SELx and START_ENAx lines are sampled at the START falling edge,
and must remain stable until BUSYrising edge

OK/ERRx lines become valid at the
BUSY falling edge

Previous state New state

Low-Level Interface Signals Timing

4

41

FlashRunner Cube User’s Manual

Project Assignment
Before working in standalone mode, you must associate PRJ_SELx lines to
a Project filename to execute.
To do so, in the FR CUBE Project Generator application select
Project > Hardware Settings. In the window that will appear, associate
PRJ_SEL values to project names by clicking the “Set Project” button for
each PRJ_SEL configuration you wish you setup.

5

43

FlashRunner Cube User’s Manual

5. FR CUBE API

Overview
You can build your own PC software that interfaces to the instrument, by
using the provided FR CUBE Application Programming Interface (API). The
FR CUBE API consists of a series of functions, contained in the fr_comm
DLL, which allow you to set up and control the programmer.
The fr_comm DLL is located in the \Developer folder, relative to the
FR CUBE software installation path. In the same folder you can find the
source code of sample applications, in various programming languages,
that use the fr_comm DLL.
Additionally, a command line application (fr_cmds.exe) is provided, which
reads a programming command from the stdin, sends the command to the
instrument, and writes the command answer on the stdout.

Including the API in Your Application
To use the FR CUBE API, you must:

 Include the “fr_comm.lib” and “fr_comm.h” files in your
 application project (only needed for Visual C++ projects);
 Copy the “fr_comm.dll” file in the same folder of your

 application executable (this file must also be redistributed with
 your application).

FR CUBE API

5

44

The typical program flow for interfacing with FR CUBE is the following:

1. Open communication (FR_OpenCommPort()function)

2. Execute commands(FR_ExeCommand()function)

3. Transfer files to/from the instrument’s internal memory
(FR_SendFile()andFR_ReceiveFile()functions)

4. Close communication(FR_CloseCommPort()function)

Function Reference
API functions are listed and explained alphabetically in the following pages.

5

45

FlashRunner Cube User’s Manual

FR_CloseCommPort()

Prototype

FR_COMM_ERR WINAPI FR_CloseCommPortA (FR_COMM_HANDLE handle);

FR_COMM_ERR WINAPI FR_CloseCommPortW (FR_COMM_HANDLE handle);

Description

Closes the communication channel with the instrument.

Return Value

0 The function call was successful.
!=0 The function call was unsuccessful.
 Call the FR_GetLastErrorMessage() function to get error

information.

Parameters

handle Communication handle returned by the
 FR_OpenCommPort() function.

FR CUBE API

5

46

FR_ExeCommand()

Prototype

FR_COMM_ERR WINAPI FR_ExeCommandA (FR_COMM_HANDLE handle, const
char *command, char *answer, unsigned long maxlen, unsigned long timeout_ms,
FR_ANSWER_TYPE *type);

FR_COMM_ERR WINAPI FR_ExeCommandW (FR_COMM_HANDLE handle, const
wchar_t *command, wchar_t *answer, unsigned long maxlen, unsigned long timeout_
ms, FR_ANSWER_TYPE *type);

Description

Executes a FR CUBE command. This function automatically sends a
command to the instrument and returns the answer read back from the
instrument. This function combines the FR_SendFrame() and FR_GetFrame()
function in a single call.

Return Value

0 The function call was successful.
!=0 The function call was unsuccessful.
 Call the FR_GetLastErrorMessage() function to get error

information.

Parameters

handle Communication handle returned by the
FR_OpenCommPort() function.

command A valid FR CUBE command.
answer The answer read back from the instrument in response

to the command sent.
maxlen Maximum length, in characters, of the answer buffer.
timeout_ms Time (in milliseconds) before the function times out.
type Type of answer received: can be:

FR_ANSWER_ACK (an OK frame was received);
FR_ANSWER_NACK (an ERR frame was received);
FR_ANSWER_TOUT (command timed out before an
answer could be received).

5

47

FlashRunner Cube User’s Manual

FR_GetFrame()

Prototype

FR_COMM_ERR WINAPI FR_GetFrameA (FR_COMM_HANDLE handle, char *answer,
unsigned long maxlen, unsigned long timeout_ms);

FR_COMM_ERR WINAPI FR_GetFrameW (FR_COMM_HANDLE handle, wchar_t
*answer, unsigned long maxlen, unsigned long timeout_ms);

Description

Reads the answer to the command sent by the FR_SendFrame() function.

Return Value

0 The function call was successful.
!=0 The function call was unsuccessful.
 Call the FR_GetLastErrorMessage() function to get error

information.

Parameters

handle Communication handle returned by the
 FR_OpenCommPort() function.
answer The answer read back from the instrument in response

to the command sent.
maxlen Maximum length, in characters, of the answer buffer.
timeout_ms Time (in milliseconds) before the function times out.

FR CUBE API

5

48

FR_GetLastErrorMessage()

Prototype

void WINAPI FR_GetLastErrorMessageA (char *error_msg, unsigned long tring_len);

void WINAPI FR_GetLastErrorMessageW (wchar_t *error_msg, unsigned long string_
len);

Description

Returns a string containing the last FR CUBE error message.

Parameters

error_msg The string that will receive the error message.
msg_len Length, in characters, of the error message buffer.

5

49

FlashRunner Cube User’s Manual

FR_ReceiveFile()

Prototype

FR_COMM_ERR WINAPI FR_ReceiveFileA (FR_COMM_HANDLE handle, const char
*protocol, const char *src_filename, const char *dst_path, bool force_transfer, FR_
FileTransferProgressProc progress);

FR_COMM_ERR WINAPI FR_ReceiveFileW (FR_COMM_HANDLE handle, const
wchar_t *protocol, const wchar_t *src_filename, const wchar_t *dst_path, bool force_
transfer, FR_FileTransferProgressProc progress);

Description

Receives a file from the instrument’s internal memory and saves it to the
PC.

Return Value

0 The function call was successful.
!=0 The function call was unsuccessful.
 Call the FR_GetLastErrorMessage() function to get error

information.

Parameters

handle Communication handle returned by the
 FR_OpenCommPort() function.
protocol Transfer protocol. Must be “ymodem”.
src_filename The full filename, including path, of the remote file.
dst_path The PC path where to store the file.
force_transfer If TRUE, file transfer will be executed even if a file with

the same name and CRC exists on the PC; if FALSE,
 file transfer will be executed only if necessary.
progress Address of a callback function that will receive progress

information, or 0 if not used.

FR CUBE API

5

50

FR_SendFile()

Prototype

FR_COMM_ERR WINAPI FR_SendFileA (FR_COMM_HANDLE handle, const char
*protocol, const char *src_filename, const char *dst_path, bool force_transfer,
FR_FileTransferProgressProc progress);

FR_COMM_ERR WINAPI FR_SendFileW (FR_COMM_HANDLE handle, const wchar_t
*protocol, const wchar_t *src_filename, const wchar_t *dst_path, bool force_ transfer,
FR_FileTransferProgressProc progress);

Description

Sends a file to the instrument’s internal memory.

Return Value

0 The function call was successful.
!=0 The function call was unsuccessful.
 Call the FR_GetLastErrorMessage() function to get error

information.

Parameters

handle Communication handle returned by the
FR_OpenCommPort() function.

protocol Transfer protocol. Must be “ymodem”.
src_filename The source full filename.
dst_path The remote instrument file system path where to store

the file.
force_transfer If TRUE, file transfer will be executed even if a file with

the same name and CRC exists on the instrument;
 if FALSE, file transfer will be executed only if necessary.
progress Address of a callback function that will receive progress

information, or 0 if not used.

5

51

FlashRunner Cube User’s Manual

FR_SendFrame()

Prototype

FR_COMM_ERR WINAPI FR_SendFrameA (FR_COMM_HANDLE handle, const char
*command);

FR_COMM_ERR WINAPI FR_SendFrameW (FR_COMM_HANDLE handle, const
wchar_t *command);

Description

Sends a command to the instrument. Use the FR_GetFrame() function to
retrieve the answer.

Return Value

0 The function call was successful.
!=0 The function call was unsuccessful. Call the
 FR_GetLastErrorMessage() function to get error information.

Parameters

handle Communication handle returned by the
FR_OpenCommPort() function.

command A valid FR CUBE command.

FR CUBE API

5

52

FR_OpenCommPort()

Prototype

FR_COMM_HANDLE WINAPI FR_OpenCommPortA (const char *com_port, const char
*com_settings);

FR_COMM_HANDLE WINAPI FR_OpenCommPortW (const wchar_t *com_port, const
wchar_t *com_settings);

Description

Opens a RS-232, Ethernet or USB communication channel with the
instrument.

Return Value

>0 alid communication handle to use in subsequent
functions.

NULL The function call was unsuccessful. Call the
 FR_GetLastErrorMessage() function to get error information.

Parameters

com_port Communication port. Can be “COM”, “LAN” or “USB”.
com_settings RS-232 settings for “COM” port (e.g.: ”COM1,115200”);

Ethernet settings for “LAN” port (e.g.: ”192.168.1.100:2101”);
Empty string for “USB” port.

6

53

FlashRunner Cube User’s Manual

6. FR CUBE File System

Overview

FR CUBE has a large, built-in non-volatile memory, used to store the various
files required by the instrument: programming projects, image files, etc.
This memory is organized by a file system. You can explore the FR CUBE
files either by using a Terminal application and sending file-system related
commands, or (more simply) by using the File Manager window of the
Project Generator application. The File Manager window allows you to easily
see the instrument file structure and transfer files with the PC. To open the
File Manager, choose Tools > FR CUBE File Manager from the Project
Generator menu.

FR CUBE File System

6

54

File System Structure
The files required by the instrument are organized in various folders, as
explained below:

 \drivers folder: contains programming algorithms (.wnd files).
 These files are provided by Systein.
 \sys folder: contains systems files, such as programming licenses,

 firmware files, etc.
 These files are provided by Systein.
 \project folder: contains programming projects (.prj files).

 You create programming projects using the Project Generator
 application.
 \images folder: contains FR CUBE image files to be

 programmed to the target (.wni files).
 FR CUBE image files contain all the information needed to
 program a target device memory. These files are created by the
 Project Generator application.

You can create additional folders, but the four folders listed
above must always be present on the FR CUBE file system and
must not be removed. Additionally, do not remove or rename
the contents of the \SYS folder.

7

55

FlashRunner Cube User’s Manual

7. Variable Data Programming

Overview
FR CUBE has built-in, dedicated memory banks for each programming
site. This memory can be used to temporarily store variable data that will
be written to the target device during programming. This is useful for serial
numbering and for any other variable data that needs to be written to the
target device at programming time.

Usage
To implement variable data programming:

1. Use the Project Creation wizard of the Project Generator
 application to create your programming project. When creating
 the FR CUBE Image file, add a variable data record to the output
 file, as shown below.

Variable Data Programming

7

56

2. You will then be asked for the target device address range to
 be programmed and the offset of the memory bank that will
 contain the variable data.

3. Proceed to the end of the Project Creation wizard. Your
 programming project is now ready to accept variable data.
4. Before executing the project, you must supply the variable data
 to each of the programming sites.
 To do so, send the #volatile –o write command (for more information,
 see “Volatile Memory Commands” on page 38).

Alternatively, you can skip steps 1 to 3, but you must manually edit your
programming project by inserting an appropriate #data –o set –c out -t volatile
command and subsequent appropriate programming commands (for more
information, see “Data In/Out Commands” on page 30).

8

57

FlashRunner Cube User’s Manual

8. Power and Relay Options

Power Supply Options
FR CUBE can be powered in two ways:

1. With the provided power supply (which supplies 15V DC);
2. By providing a power supply to the PWR pin of the
 Low-Level Interface connector (see “Low-Level Interface
 Connector” on page 60).

Relays
On all FR CUBE models, a special signal (SxRLY) is present (on the “ISP”
connector), on every programming site. If the programming site is enabled,
this signal is driven to 0V when a #relay –o close command is executed, and
driven to 5.5V when a the #relay –o open command is executed).
This is useful for driving an external relay barrier.

9

59

FlashRunner Cube User’s Manual

9. Connectors

ISP Connectors
FR CUBE GP02 PASS and FR CUBE GP04 PASS models have one ISP
connector; the FR CUBE GP08 PASS model has two ISP connectors.

FRC_GP_02 ISP Connector

FRC_GP_04 ISP Connector

FRC_GP_08 ISP Connectors

Connectors

9

60

IS
P

Si
gn

al
 D

efi
ni

tio
ns

C
o

lo
r

IS
P

 C
o

nn
ec

to
r

A

S
ite

s
IS

P
 C

o
nn

ec
to

r
B

S

ite
s

FR

S
ig

na
l

N
am

e
Ta

rg
et

 S
ig

na
l D

es
cr

ip
tio

n

S1
S2

S3
S4

S5
S6

S7
S8

B
ro

w
n

A1
A5

A9
A1
3

A1
A5

A9
A1
3

Sx
L0
1

#W
 -

 W
rit

e
P

ro
te

ct
 (p

ro
gr

am
m

er
 s

et
 to

 in
ac

tiv
e

le
ve

l w
hi

le
 p

ro
gr

am
m

in
g

th
e

de
vi

ce
)

R
ed

A2
A6

A1
0

A1
4

A2
A6

A1
0

A1
4

Sx
L0
2

C
LK

 -
 S

er
ia

l C
lo

ck

O
ra

ng
e

A3
A7

A1
1

A1
5

A3
A7

A1
1

A1
5

Sx
L0
3

D
O

(IO
1)

 -
 S

er
ia

l D
at

a
O

ut
pu

t

Ye
llo

w
A4

A8
A1
2

A1
6

A4
A8

A1
2

A1
6

Sx
L0
4

C
LO

C
K

O
U

T

G
re

en
B1

B5
B9

B1
3

B1
B5

B9
B1
3

Sx
L0
5

#S
 -

 C
hi

p
se

le
ct

B
lu

e
B2

B6
B1
0

B1
4

B2
B6

B1
0

B1
4

Sx
L0
6

D
I(I

O
0)

 -
 S

er
ia

l D
at

a
In

pu
t

P
ur

pl
e

B3
B7

B1
1

B1
5

B3
B7

B1
1

B1
5

Sx
L0
7

#H
O

LD
 -

 H
ol

d
(p

ro
gr

am
m

er
 s

et
 to

 in
ac

tiv
e

le
ve

l
w

hi
le

 p
ro

gr
am

m
in

g
th

e
de

vi
ce

)

G
re

y
B4

B8
B1
2

B1
6

B4
B8

B1
2

B1
6

Sx
PP
S

V
D

D
 -

 T
ar

ge
t V

D
D

 (P
ro

gr
am

m
er

 c
an

 p
ro

vi
de

 a

po
w

er
 s

up
pl

y
fo

r t
he

 ta
rg

et
 s

ys
te

m
)

B
la

ck

C1 C2 C3

C5 C6 C7

C9 C1
0

C1
1

C1
3

C1
4

C1
5

C1 C2 C3

C5 C6 C7

C9 C1
0

C1
1

C1
3

C1
4

C1
5

Sx
RL
Y

G
N

D
 -

 G
N

D

W
hi

te
C4

C5
C1
2

C1
6

C4
C5

C1
2

C1
6

Sx
GN

D
R

LY
 -

 R
el

ay
 O

ut
pu

t

9

61

FlashRunner Cube User’s Manual

Low-Level Interface Signals

Signal Description FR CUBE GP02
Pin

FR CUBE GP04
Pin

FR CUBE GP08
Pin

PWR Input Power Supply (12-24V) A5/B5 A5/B5 A5/B5
GND Power Supply Ground C5 C5 C5

GNDI Low-Level Interface Ground
A10/B12/
C15/C16

A10/B12/
C15/C16

A10/B12/
C15/C16

TX_RS232 RS-232 TX (Output) A16 A16 A16

RX_RS232 RS-232 RX (Input) B16 B16 B16

PRJ_SEL0
Project Selector 0 (Input, internal
pull-up)

B10 B10 B10

PRJ_SEL1
Project Selector 1 (Input, internal
pull-up)

C10 C10 C10

PRJ_SEL2
Project Selector 2 (Input, internal
pull-up)

A11 A11 A11

PRJ_SEL3
Project Selector 3 (Input, internal
pull-up)

B11 B11 B11

PRJ_SEL4
Project Selector 4 (Input, internal
pull-up)

C11 C11 C11

PRJ_SEL5
Project Selector 5 (Input, internal
pull-up)

A12 A12 A12

START
Project Start (Input, internal
pull-up)

A7 A7 A7

START_ENA1
Site 1 Project Start Enable (Input,
internal pull-up)

B7 B7 B7

START_ENA2
Site 2 Project Start Enable (Input,
internal pull-up)

C7 C7 C7

START_ENA3
Site 3 Project Start Enable (Input,
internal pull-up)

- A8 A8

START_ENA4
Site 4 Project Start Enable (Input,
internal pull-up)

- B8 B8

START_ENA5
Site 5 Project Start Enable (Input,
internal pull-up)

- - C8

START_ENA6
Site 6 Project Start Enable (Input,
internal pull-up)

- - A9

START_ENA7
Site 7 Project Start Enable (Input,
internal pull-up)

- - B9

START_ENA8
Site 8 Project Start Enable (Input,
internal pull-up)

- - C9

BUSY Busy (Output, push-pull) C12 C12 C12
PASS/FAULT1 S1 PASS/FAULT (Output, push-pull) A13 A13 A13

PASS/FAULT2 S2 PASS/FAULT (Output, push-pull) B13 B13 B13

PASS/FAULT3 S3 PASS/FAULT (Output, push-pull) - C13 C13

PASS/FAULT4 S4 PASS/FAULT (Output, push-pull) - A14 A14

PASS/FAULT5 S5 PASS/FAULT (Output, push-pull) - - B14

PASS/FAULT6 S6 PASS/FAULT (Output, push-pull) - - C14

PASS/FAULT7 S7 PASS/FAULT (Output, push-pull) - - A15

PASS/FAULT8 S8 PASS/FAULT (Output, push-pull) - - B15

Connectors

9

62

All low-level interface lines are isolated from system GND (and
are referenced to GNDI), except for the PWR line, which is
referenced to GND.

Ground Domains
The following diagram illustrates the two ground domains of the
programmer.

ATE and Target Ground Domains

In order to avoid undesired current paths between the
programmer and the target board, we suggest to use a power
supply with a floating output (ground not referenced to the
Earth potential).

10

63

FlashRunner Cube User’s Manual

10. Specifications

Electrical Specifications

Feature Value

Maximum Ratings
Power supply voltage 30V
ISP SxL0[1..7] voltage -0.7-6.5V
ISP SxL0[1..7] current ±60mA
ISP SxPPS voltage -0.7-18V
ISP SxPPS current(*) 380mA
ISP SxRLY voltage -1.0-30V
Low level interface PRJ_SELx, START,
START_ENAx, BUSY, PASS/FAULTx
voltage

-0.7-6.0V

Operating Ranges
Power supply voltage 12-24V
ISP SxL0[1..7] voltage 0-5.5V
ISP SxPPS voltage 1.5-15V
ISP SxPPS current 300mA
ISP SxRLY voltage 0-28V
Low level interface PRJ_SELx, START,
START_ENAx, BUSY, PASS/FAULTx
voltage

0-5.0V

Physical and Environmental

Operating conditions
0-40°C, 90% humidity max (without

condensation)

Storage conditions
-10-60°C, 90% humidity max (without

condensation)
EMC (EMI/EMS) CE, FCC

(*) Current limited, recovers automatically after fault condition is
removed.

Specification

10

64

ISP Connectors
ISP and Low-Level Interface connectors are DIN48 male connectors.
We suggest using the following compatible female connectors.

For wire wrapping:
DIN41612 connector, 3 rows, 48 pins, 180° female, C style
Manufacturer: Conec
Manufacturer Part Number: 122A10619X
Catalog Part Number: Mouser 706-122A10619X

For soldering:
DIN41612 connector, 3 rows, 48 pins, female, R/A C style
Manufacturer: FCI
Manufacturer Part Number: 86093488613755E1LF
Catalog Part Number: Mouser 649-8693488637E1L

10

65

FlashRunner Cube User’s Manual

Mechanical Specifications
The following drawings detail the mechanical dimensions of the various
FR CUBE models.

92 11
1

129

146

Specification

10

66

12 9
16

92

111

11 13

24 26
11 13

24 26

129

4731
7

146

11 24 26

129

4747

146

VAT (P.I./C.F.) n. IT01697470936
Via Giovanni Agnelli, 1
33083 Villotta di Chions (PN) Italy

Phone +39 0434 421111
Fax +39 0434 639021
info@smh-tech.com
www.smh-tech.com

Registered office/sede legale:
V.lo del Forno 9
Zip/Cap 33170 Pordenone (PN) Italy
Share Capital/Capitale Sociale € 10.000

Systein Italia Srl

