

Interfacing FlashRunner 2.0 with S32K devices

Summary

Interfacing FlashRunner 2.0 with S32K devices .. 1

S32K Standard Commands .. 1

S32K1xx Additional Commands .. 2

S32K3xx Additional Commands .. 2

S32K3xx Additional Parameters .. 3

S32K Supported protocols ... 3

S32K memory maps and commands .. 4

S32K1XX SUPPORTED MEMORIES AND COMMANDS .. 4

S32K3XX SUPPORTED MEMORIES AND COMMANDS .. 4

S32K1xx [0x400-0x40F] flash area ... 5

S32K1xx Partition ... 6

S32K1xx Set FlexRAM .. 9

S32K1xx User Cases ... 10

S32K3xx HSE .. 17

S32K3xx UNLOCK/LOCK .. 17

S32K3xx DCFs ... 18

S32K Standard Commands
CONNECT
This command is used to connect to the device. It might print information on the status of the debug interfaces.
MASSERASE <memory_type>

This command is used to erase the specified memory.

BLANKCHECK <memory_type> <[startAddress]><[size]>

This command is used to check if the specified memory is blank or a portion of it. Start address and size are optional

parameters.

PROGRAM <memory_type>

This command is used to flash the specified memory with a customer’s firmware which fits into this memory.

17/04/2025

Driver v5.12

Ivan Liberotti

VERIFY <memory_type> <verify_method>

This command is used to compare the content of the memory with a customer’s firmware.

R – Readout

S – CRC32

READ <memory_type> <start_address> <size>

This command is used to read the specified memory or a portion of it and print it out in the GUI terminal.

DUMP <memory_type> <start_address> <size>

This command is used to read the specified memory or a portion of it and save it into a binary file stored inside the

programming system SD-CARD.

DISCONNECT

This command is used to disconnect from the device.

S32K1xx Additional Commands
SECTOR_ERASE <memory_type> <startAddress> <size>
This command is used to erase a portion of the specified memory area.
PARTITION <CSEc_key_size> <SFE> <loadRam> <EEprom data set size code> <FlexNVM partition code>

This command is used to partition the flexNVM (D) memory. To check more about it, see chapter S32K1xx Partition.

SETFLEXRAM <function> <quick_write_size>

This command is used to change flexRAM mode. To check more about it, see chapter S32K1xx Set FlexRAM.

UNSECURE

This command is used to unlock the device debug interface. It also removes any partition in the device in standard

circumstances (CSEc disbaled), deletes FLASH, FlexNVM and FlexRAM content and restore the FSEC register (0x40C) in

the FLASH memory to 0xFE. It removes also other active protections on flash regions/FlexNVM/FlexRAM.

RUN <time [ms]>

This command is used to execute the customer’s firmware for.the specified amount of time in ms

READ_REGISTER <address> <size [8|16|32|-bit]>

This command is used to read the specified register in the memory space.

READ_REGISTER_COMPARE <address> <size [8|16|32|-bit]><compareValue>

This command is used to read the specified register in the memory space and compare its value with the specified one.

CHECK_PROTECTION

This command is used to read the the status of the debug interface. Use it alone only, between TPSTART and TPCMD

DISCONNECT: it serves the purpose to print the information to be parsed by customer’s high level application to choose

what to do after.

READ_CHECKSUM <memType><[address]> <[size]>

This command is used to compute the checksum16 on the specified memory area or a portion of it

COMPUTE_CRC32 <memType><[address]> <[size]>

This command is used to compute the checksum32 on the specified memory area or a portion of it.

S32K3xx Additional Commands
SECTOR_ERASE <memory_type> <startAddress> <size>
This command is used to erase a portion of the specified memory area.
WRITE_UTEST <address> <size>

This command is used to program the DCFs UTEST area as an internal storage. To check more about it, see chapter

DCFs. Data can be set in an FRB file or dynamic memory.

READ_UTEST <address> <size>

This command is used to verify the DCFs UTEST area as an internal storage. To check more about it, see chapter DCFs.

Data can be set in an FRB file or dynamic memory.

FUNCTIONAL_RESET <time [ms]>

This command is used to execute a functional reset. Mostly used to install HSE firmware. To check more about it, see

chapter HSE.

RUN <time [ms]>

This command is used to execute the customer’s firmware for the specified amount of time in ms.

READ_REGISTER <address> <size [8|16|32|-bit]>

This command is used to read the specified register in the memory space.

READ_REGISTER_COMPARE <address> <size [8|16|32|-bit]><compareValue>

This command is used to read the specified register in the memory space and compare its value with the specified one.

CHECK_PROTECTION

This command is used to read the the status of the debug interface. Use it alone only, between TPSTART and TPCMD

DISCONNECT: it serves the purpose to print the information to be parsed by customer’s high level application to choose

what to do after.

READ_CHECKSUM <memType><[address]> <[size]>

This command is used to compute the checksum16 on the specified memory area or a portion of it. Start address and

size are optional parameters.

COMPUTE_CRC32 <memType><[address]> <[size]>

This command is used to compute the checksum32 on the specified memory area or a portion of it. Start address and

size are optional parameters.

S32K3xx Additional Parameters
#TCSETPAR PWD_ADDR <address>

Parameter used to indicate the FRB or dynamic memory address of the password that needs to be used to unsecure the
device during the CONNECT command.

#TCSETPAR CORE_M7 <core>

Parameter used to specify which core M7 should be used to flash the target non-volatile memories. To check more

about it, see chapter S32K3xx cores.
#TCSETPAR HSE_DELAY <time[ms]>

Parameter used to introduce a delay in the CONNECT command before interacting with the core when the HSE is

installed for the first time. Used in very few specific cases.

S32K Supported protocols

S32K flashing algorithm supports only SWD protocol. JTAG does not give access to any additional unique features for
these devices and the JTAG physical connections allow the user to anyway flash the device through the SWD protocol.

Furthermore the SWD protocol is more efficient and robust.

#TCSETPAR CMODE <SWD>

S32K memory maps and commands

S32K1xx supported memories and commands
1) [F] – Flash

2) [D] – FlexNVM

3) [R] – FlexRAM

CONNECT
MASSERASE F|D
BLANKCHECK F|D <[startAddress]><[size]>

PROGRAM F|D|R

VERIFY F|D|R R|S

READ F|D|R <start_address> <size>

DUMP F|D|R <start_address> <size>

SECTOR_ERASE F|D <startAddress> <size>
PARTITION <CSEc_key_size> <SFE> <loadRam> <EEprom data set size code> <FlexNVM partition code>

SETFLEXRAM <function> <quick_write_size>

UNSECURE

RUN <time [ms]>

READ_REGISTER <address> <size [8|16|32|-bit]>

READ_REGISTER_COMPARE <address> <size [8|16|32|-bit]><compareValue>

CHECK_PROTECTION

READ_CHECKSUM F|D<[address]> <[size]>

COMPUTE_CRC32 F|D <[address]> <[size]>

DISCONNECT

S32K3xx supported memories and commands
1) [F] – Flash

2) [D] – DataFlash

3) [O] – UTEST OTP

4) [U] – UTEST DCFs

CONNECT
MASSERASE F|D

BLANKCHECK F|D <[startAddress]><[size]>

PROGRAM F|D|O|U

VERIFY F|D|O|U R|S (S method available only for F and D memory)

READ F|D|O|U <start_address> <size>

DUMP F|D|O|U <start_address> <size>

SECTOR_ERASE F|D <startAddress> <size>
WRITE_UTEST U <address> <size>

READ_UTEST U <address> <size>

FUNCTIONAL_RESET <time [ms]>

RUN <time [ms]>

READ_REGISTER <address> <size [8|16|32|-bit]>

READ_REGISTER_COMPARE <address> <size [8|16|32|-bit]><compareValue>

CHECK_PROTECTION

READ_CHECKSUM F|D <[address]> <[size]>

COMPUTE_CRC32 F|D <[address]> <[size]>

DISCONNECT

S32K1xx [0x400-0x40F] flash area

The value stored at these addresses are very delicate and could influence the reflashing of the MCUs.

1) [0x400 – 0x407]: backdoor key

2) [0x408 – 0x40B]: Flash regions protection

3) [0x40C]: FSEC

4) [0x40D]: FOPT [0x40E]: FEPROT [0x40F]: FDPROT

FSEC explains itself in the image below:

The backdoor key is a sequence of 8 bytes to be used in certain conditions to unlock access to the device:

1) KEYEN field of FSEC register should be set to 0b10

2) MEEN field of FSEC set to 0b10 (disable UNSECURE command)

3) SEC field of FSEC set to 0b00 or 0b01 or 0b11

In this condition, the device cannot be unlocked through SWD, but only through the verify backdoor key command that

should be sent through a serial port and should be read from an already running FW inside the MCU that will then

unlock the debug interface. From an SWD programmer/debugger point of view, this is an irreversible condition. S32K

algorithm could still use the UART to send the backdoor key, but this would require an implementation activity and

collaboration with the FW design team.

If the KEYEN is disabled, but again point 2) and 3) are in the way explained before, from a programmer/debugger point

of view, this is a completely irreversible condition.

As soon as the MEEN is enabled, the device can be reflashed through an UNSECURE command in standard

circumstances.

Flash regions protection allow the user to disable any program/erase operation through FTFC peripheral (MASSERASE F,

PROGRAM F…). The UNSECURE will remove these protections.

FOPT customizes MCU functionality.

FEPROT and FDPROT enable protections on EEPROM/FlexNVM area (MASSERASE D, PROGRAM D, PROGRAM R…). The

UNSECURE will remove these protections.

S32K1xx Partition

The partition command is mainly used to divide the FlexNVM area into two parts:

1) DataFlash

2) EEPROM backup

Based on the last parameter of the command (<FlexNVM partition code>), the following images contain the

configuration for every S32K1xx supported by this algorithm:

The DataFlash size can still be accessed by FlexNVM flashing commands (MASSERASE D, PROGRAM D), while the

EEPROM backup area cannot be accessed by any tool. It is just important to not have a FW whose data are in the

reserved area: that would make absolutely no sense, it means something is wrong in customer flow.

Furthermore, the partition command deletes the content from the FlexNVM memory: it is useless to program data here

and partition it: the content will just be deleted, that would again make no sense, it means something is wrong in

customer flow.

To make partitioning take effect, a reset/reconnect is needed and this is done automatically by the algorithm command:

if the FLASH of the device has been erased or for any reasons the FSEC register is set to a value that enables the

protection, after a PARTITION command, the device will be locked. This is the reason why usually the PARTITION is

launched right after the CONNECT or UNSECURE command before executing flashing operations on the device.

The EEPROM backup part is strictly connected to the FlexRAM memory: in fact, this FlexRAM memory, once written,

save data on this EEPROM backup area and at every MCU power cycle it is again loaded with the EEPROM bacup data.

An UNSECURE command can remove the partition applied to a device under standard circumstances (no CSEc

peripheral in place).

The fourth parameter (<EEprom data set size code>) can be:

1) S32K11x

2) S32K14x

The first two parameters are not relevant and should be set to 0 for standard applications (this would require an

implementation activity and collaboration with the FW design team if CSEc peripheral, keys and SFE are needed).

The third parameter is used to choose if the content of the FlexRAM should be loaded with valid data at the next device

startup or not.

S32K1xx Set FlexRAM

The SETFLEXRAM command is mainly used to change the default FlexRAM usage as RAM into EEPROM to then store

data inside this area (PROGRAM R, VERIFY F R). Below the table of functionalities:

This command must be executed after PARTITION and FLASH flashing operations (PROGRAM F). The FTFC program

command to flash this non-volatile memory requires the FlexRAM in RAM mode: if this is changed to EEPROM before,

the algorithm will change it back again and the previous step that changed FlexRAM in EEPROM mode would be useless.

S32K1xx User Cases

1) MASSERASE F + RESET: this combination will result in the FSEC byte put to secure state. To connect to the
board again, an “UNSECURE” command needs to be used.

2) PARTITION + SET_FLEXRAM: Using the SET_FLEXRAM to set the memory as RAM can be done, but it is kind of
useless

Using it to set the FlexRAM as EEPROM needs a PARTITION command first.

Trying to set the FlexRAM as EEPROM without reserving size for it (fourth parameter) in the PARTITION

command will fail

3) PARTITION COMMAND AFTER ANYTHING THAT LOCKS THE DEVICE:
Performing a PARTITION command will reset the device, because it is needed for the partition to take effect; if

something that locks the device is executed before, the result after the PARTITION command (+RESET) will be

device locked.

In this log everything is passing because there is no reset among the MASSERASE F and the rest of the flashing

operations

If a PARTITION is put in the middle, reset happens, and device is locked

4) PERFORMING FlexRAM OPERATIONS BEFORE FLASH OR FlexNVM FLASHING:
It is not allowed to flash the FlexRAM before flashing the FLASH or FlexNVM simply because these two area use

FlexRAM as RAM and doing so, they will delete all the content that was previously stored in the FlexRAM used

as EEPROM

5) FlexNVM OPERATIONS vs PARTITION COMMAND:
If the PARTITION is performed to reserve size for EEPROM backup, then every flashing operation that will try to

access this reserved area will fail

If the following flashing operations are not accessing the EEPROM backup reserved area, they will pass

Executing the PARTITION command after programming the FlexNVM memory is not allowed since it will delete

the firmware just stored inside

6) The hardest programming process to handle is when the FLASH firmware locks the access to the device, the
FlexNVM needs to be partitioned for both DFLASH data and EEPROM backup and some data needs to be
stored inside the FlexRAM memory used as EEPROM.

First of all let us consider the secure state of the FLASH firmware: there must be no reset after storing this

firmware inside the FLASH. The PARTITION command performs a reset so it must be done before flashing (user

case 3).

The FlexNVM is heavily influenced by the PARTITION (user case 5): both MASSERASE D and BLANKCHECK D

must be done before if needed. After the PARTITION command, the only available memory of the FlexNVM will

be the one reserved to the DFLASH data. Every attempts to access the area reserved to the EEPROM backup

will fail: be sure that the flashing operations done after the PARTITION command only deals with the DFLASH

part.

To program the FlexRAM, “SET_FLEXRAM” command needs to be executed, but this cannot be done before

flashing the FLASH or the FlexNVM memories (user case 4): this is the reason why they must be done at the

end of the project.

So first comes MASSERASE D and BLANKCHECK D, then PARTITION.

After this, flashing operations on the FlexNVM and on the FLASH memories can be performed, but we need to

be sure that EEPROM backup reserved area in the FlexNVM after PARTITION is not accessed by any of them.

At the end FlexRAM flashing can be executed.

S32K3xx HSE

S32K3xx HSE is a peripheral that can be configured to run its own firmware. From a programmer point of view, there are

two ways to install it:

1) By downloading the HSE FW inside the FLASH and executing it

2) Hybrid approach: writing a value different from 0xFFFFFFFFFFFFFFFF at UTEST addresses

 [0x1B000000 – 0x1B000007], downloading HSE FW inside the FLASH and execute it

Two commands can be used to execute it:

1) RUN <time [ms]>

2) FUNCTIONAL_RESET <time [ms]>.

The choice of what methods should be used to program the HSE is up to the customer and how the FW has been designed:

same applies to what command needs to be performed to start the installation process and the time needed for it.

The installation process just copies the HSE FW downloaded in FLASH to its secure memory. After that, the FLASH memory

can be erased to store final application.

After having successfully installed the HSE, this peripheral will take some part of CodeFlash/DataFlash; the reserved parts

and their size may vary depending on the configuration chosen and the HSE FW used and cannot be accessed by any

programmer/debugger.

The CONNECT command is able to understand if the device is configured to work on FULL_MEM mode or AB_SWAP mode

and the related reserved size in CodeFlsah/DataFlash that the HSE requires to work properly.

The MASSERASE F|D and BLANKCHECK F|D skips the HSE reserved sectors if the HSE peripheral has been enabled.

The usage of the HSE is not mandatory: it depends on customers requirements and purposes. These devices can be also

used without it.

S32K3xx UNLOCK/LOCK

To lock an S32K3xx MCU, two steps are needed:

1) A “password” that can be flashed by the programmer for static mode

2) Lifecycle advance that requires a FW execution

If the customer requires to lock the device in static mode, it is possible to choose between an hybrid approach where the

programmer flashes the 16 bytes password at address [0x1B000080 – 0x1B00008F] and its firmware advances the lifecycle

or just executing a FW that installs the password and advance the lifecycle.

For the dynamic mode everything is handled by the HSE and it requires a FW execution.

FlashRunner CONNECT command is able to recognize if a device is locked and unlocks it only if the static mode lock has

been chosen. Dynamic mode unlock would require an implementation activity and collaboration with the FW design team.

#TCSETPAR PWD_ADDR <address> is used to indicate the FRB or dynamic memory address of the password that needs to be
used to unsecure the device during the CONNECT command.

S32K3xx DCFs

DCF configures certain registers of this chip during system boot while the reset signal asserts. An individual DCF record

points to an internal register in the chip and the data to be written to that register.

The DCF records that customers supply must be added in a contiguous manner immediately following the factory-written

DCF records. This area must never have an unprogrammed record in the series of DCF records because that is interpreted

as a stop record. This is the reason why this area is not treated as a normal non-volatile memory when executing yhe

related PROGRAM command. When flashing this area, the algorithm will look for the first blank space in the area, ignoring

the addresses in the dynamic memory/FRB file and place the DCF records one after another as soon as it finds the first

empty location. In this way, it is guranateed that the functionality of this area is never compromised.

If the customer requires it to be treaten as a normal non-volatile storage, it can execute WRITE_UTEST U <startAddress>

<size> to specify the address and the size of data to be programmed. By giving as source dynamic memory or FRB, the

customer can program this area from the specified address as a normal non-volatile memory and not for the function it

has been designed for. The related READ_UTEST U <startAddress> <size> command allows the customer to verify these

data.

