

Interfacing FlashRunner
with NAND Flash Memories

1. Introduction

This document aims to explain how FlashRunner manages the NAND memories, both the classic
parallel NAND and the new serial NAND. First of all, let us explain the peculiarities of these memories.

The increasing request for higher storage capacity, due to the complexity of the new projects, is
leading customers to search for bigger memories while keeping the costs as low as possible. NAND
flash memories are exactly the solution for these requirements and they are going to replace NOR
flash memories for many applications. The reason why NAND flash memories are cheaper than NOR
is because of the different architecture, which is simpler and, so, production is cheaper. Moreover,
NOR flash memories basically reached the capacity limit because at densities above 512Mbits they
scale poorly and their die size and cost are excessive.
On the other hand, NAND flash memories are less reliable than NOR because they can have bitflip
and bad blocks. That is why NAND flash memories require error correction code (ECC) and bad block
management, which make them less “user-friendly” and a bit “tricky”.
One more advantage of NAND flash memories compared to NOR is the erase and program speed
which is much faster. This is extremely important for several applications, such as ADAS, clusters,
gaming consoles, systems that require fast over-the-air updates (OTA), autonomous driving systems
and artificial intelligence systems in general.

Since classic parallel NAND uses a complex protocol, silicon producers developed new serial NAND
flash memories that use Quad-SPI and Octo-SPI protocol (same as the Serial NOR flash memories).

You can download the latest version of this document from this static link: Interfacing FlashRunner
with NAND Flash Memories.

DC11562
Driver 2.08

September 2023
R. Ertolupi

https://smh-tech.com/remos_docs_remoto/Interfacing%20FlashRunner%20with%20Serial%20NOR%20Flash%20Memories.pdf
https://smh-tech.com/wp-content/uploads/repository/Interfacing%20FlashRunner%20with%20NAND%20Flash%20Memories.pdf
https://smh-tech.com/wp-content/uploads/repository/Interfacing%20FlashRunner%20with%20NAND%20Flash%20Memories.pdf

2. Contents

1. Introduction ... 1

2. Contents ... 2

3. How to create a project? .. 3

4. Bad block management and memory partitions ... 10

5. Error Correction Code (ECC) and bit error tolerance ... 11

6. Protocols and frequencies supported ... 13

7. Hardware setup .. 14

8. Flashing time examples .. 15

MT29F2G08ABAEA [2 Gbit] ... 15
W29N02GV [2 Gbit] ... 15
W25N02JW [2 Gbit] ... 16
W35N01JW [1 Gbit] ... 16

9. Frequently Asked Questions ... 17

How many channels are needed to use a NAND memory? ... 17
How bad blocks are detected? ... 17
How does the dynamic detection of maximum bad blocks work? ... 18

3. How to create a project?

In this section, we are going to see how to create a brand new project for a NAND memory from our
graphical user interface (aka Workbench).

The very first window that will appear after selecting a NAND memory from the device list is the “FRB
Management”, as you can see below. From this window, the user has to choose the data source which
can be an existing FRB or he can quickly generate a new FRB starting from a raw binary file, an Intel
HEX file or a Motorola SREC file (other options are typically not needed for NAND memories).
In the additional options, the user can choose if he wants to ignore blank pages or not. For NAND
memories, this option is enabled by default and it is suggested to leave it enabled unless you know
what you are actually doing because it can affect the bad block management.

Then we arrive at the NAND options, which are the most interesting part, and the very first preference
to set is related to the bad block management, which can be: “Skip Method”, “Reserve Method” or
“No Bad Blocks”. Each one of them is deeply described in the chapter “Bad block management and
memory partitions”.
After that, the next setting is about the memory partitions where the user has two input methods:
“Import CSV” or “Edit manually”. The format of the CSV must be one of the following two:

• When using the dynamic definition of maximum bad blocks for each partition:
id,startBlock
0,0
1,5
…

• When using the static definition of maximum bad blocks for each partition:
id,startBlock,maxBB
0,0,1
1,5,1
…

While, if the user chooses to manually edit the partitions, the “NAND Partitions Manager” will appear
(see below) and, from this window, he will be able to do many operations.

The last important settings to define are related to ECC: in fact, the user must choose between “On-
Die ECC” (only for those memories which are supporting it), “FRB with ECC” or “Add ECC to FRB”.
When the input file is a raw binary, there will be also the possibility to remove the spare bytes from
the source file (useful when using a dump file as input).
Moreover, when “On-Die ECC” is not selected, the user can also set the bit error tolerance. Anyway,
all these features are deeply described in the chapter “Error Correction Code (ECC) and bit error
tolerance”.

Going forward, the user has to select the communication protocol and frequency and then the voltage
levels, as in the two windows reported here below.
These two windows are standard for any other device supported on FlashRunner.

On the next page of the wizard, the user can see the additional parameters. The only parameter is
the one to enable the possibility to force the erase of bad blocks. This parameter specifies how the
bad blocks are treated during the Connect and Masserase commands. When disabled, bad blocks are
detected in Connect and ignored during the Masserase command. When is enabled, the bad blocks
are ignored in Connect and the Masserase command tries to erase them. This parameter should be
left disabled because it is useful only when performing the tests before starting production.

After that, the user can choose the operations to perform on the memory. The operations suggested
are the masserase, the program and, optionally, the read and dump as you can see below.

The BLANKCHECK command is not enabled by default because it is not strictly needed since the
MASSERASE command is executed for each memory block and, for each one, the result of the
operations is checked.
Also, the VERIFY command is not enabled by default because it is not strictly needed. In fact, the
PROGRAM command is programming data block by block and it already executes the verification for
each block before going forward. So, the PROGRAM command is basically executing both the
PROGRAM and VERIFY commands.

On the last page of the wizard, the user can add additional commands to the project as shown in the
screenshot below:

The additional commands available are:

• #TPCMD SET_LINUX_BBT
This command composes, writes and verifies the Bad Block Table (BBT) in memory. The input
values are:
<max_blocks (default = 4)> <pattern_offset (default = 4)>
<version_offset (default = 20)> <version (default = 1)>

• #TPCMD GET_LINUX_BBT
This command reads, checks the integrity and decodes the BBT from memory. The input values
are the same as in the previous command.

• #TPCMD READ_PN
This command returns the part number of the connected memory. It can be used to detect
the correct project to run when alternative part numbers are used. Note: this data is also
present in the log during the CONNECT command.

• #TPCMD READ_UNIQUE_ID
This command returns the UNIQUE ID of the connected memory. Note: this data is also
present in the log during the CONNECT command.

• #TPCMD MARK_AS_BAD
This command takes as input the block index (or a range of indices) to be marked as bad by
writing all bits to 0. This command is for debugging purposes only.

4. Bad block management and memory partitions

The most important peculiarity of NAND flash memories is the presence of blocks of memories that
are not properly usable and these blocks are called “bad blocks”. So, when programming data into a
NAND memory, it is possible that some data defined in the customer’s firmware is defined to be
inserted into a block that is actually bad, then what should we do with that? Actually, there are several
possibilities, maybe infinite, because it is possible to customize the bad block management in various
ways. Anyway, these are the methods supported by FlashRunner:

• Skip Method
This is the most used method, especially for Linux-based systems. When this method is
applied, the data that should be programmed into a bad block are shifted into the next good
block. So, every time that a bad block is encountered, data are shifted forward.
This mechanism is reset every time a new partition starts because every partition must start
at a fixed address. It is also important that a partition does not overflow into the next partition
when encountering bad blocks. In fact, FlashRunner can detect the overflow condition when
too many bad blocks are encountered and it stops the flashing operations and returns the
error “Partition XX overflow (too many bad blocks)”.

• Reserve Method
This method is not meant to be used in production, this is mainly a demonstration of a
different application. Using this method the customer can define a “Reserved area” which
contains the data for each bad block encountered while programming the rest of the memory.
The user can define the start address and size of the reserved area, so it can be combined with
different partitions and different FRB files multiple times in the same project.

• No bad blocks
This is a special kind of management that basically does not allow the presence of any bad
blocks. When a bad block is encountered, FlashRunner will just stop the flashing operations
and return an error.

If your application requires a different and customized bad block management that is not supported,
feel free to ask for a quotation to support it. We are very open to support custom features since
FlashRunner is a very flexible product.
Some new serial NAND flash memories from Winbond and Macronix are also offering the possibility
to manage the bad block with an internal lookup table but, currently, this feature is not implemented
yet. So, if you need this feature, you need to send a request to Sales@SMH-Tech.com.

As mentioned above, memory partitions play an important role, especially when applying the skip
method. That is why the user is forced to define the index of the starting block for each one to proceed
with the flashing operations. Optionally, it is possible to statically define the maximum number of bad
blocks for each partition and, when they are defined, the flashing operations will be terminated
during the connect command if too many bad blocks are detected on some partitions.

mailto:Sales@SMH-Tech.com

5. Error Correction Code (ECC) and bit error tolerance

The second most important peculiarity of NAND flash memories is that they can have bit-flips, so the
user may write some data but the data that are actually written in the memory (or that are read back
from the memory) could be different. That is why it is fundamental to have an ECC algorithm that can
correct these wrong data.

Before going deep into this topic, let us give an overview of the memory structure. NAND memories
are composed of blocks, each block is composed of pages and each page is divided into the data area
and spare area, also known as spare bytes or out-of-band (OOB) area. Below you can see an example
taken from the datasheet of a parallel NAND memory of Winbond.

Typical dimensions of pages are around 2048 bytes for the data area and 64 or 128 bytes for the spare
area. Usually, the spare area contains the ECC for the data area, as you can see in the example below
taken from Micron’s Technical Note TN-29-63, where the data area is divided into four 512-bytes
chunks and, for each chunk, there is a dedicated portion of the spare area containing its ECC.

The ECC algorithm can be implemented in two ways: on the processor which is using the memory or
directly on the memory (On-Die ECC). According to the requirements of the customer’s application,
the user has to choose between including ECC on the firmware when not using On-Die ECC or not
including ECC on the firmware when using On-Die ECC.
In case the user needs to add ECC to the firmware and he cannot receive the full firmware from its
R&D department, we can offer the possibility to add the ECC using our software tools, but this must
be specified when requesting a quotation.
Another important thing to clarify when requesting a quotation is if it is needed to program dynamic
data, such as serial numbers or bad block tables, and the On-Die ECC is not used, because it this case
we must implement the ECC algorithm on the FlashRunner side to calculate ECC according to the
dynamic data. This customization will probably result in an additional cost.

When not using On-Die ECC, FlashRunner cannot rely on the memory to automatically check the
integrity of the written data and it cannot even calculate ECC because it would dramatically slow
down the programming speed. The solution is to apply an error tolerance that can be defined by the
user or left to the default value which is defined by the memory (“Autodetected”). In fact, the
memories have a table inside which contains the “required correctable bits” and that value is used as
default.

The error bit tolerance is actually an approximation because it does not take into consideration the
ECC layout which could be customized in several ways. What FlashRunner does is just counting the
bit errors on for each 512-bytes chunck of memory and its part of spare area and, if the error count
is higher than the threshold tolerance, it will try again to refresh that page. Then, if after the
refreshment, it still faces problems, FlashRunner will mark the block as bad.

One additional note about ECC that could be interesting is that, according to the algorithm used, it is
possible that a blank page is different from an erased page. This happens when the ECC for a stream
of 0xFF bytes is not 0xFF as well, for example when using BCH algorithm. So, it is very important to
properly use the “ignore blank page” feature according to the firmware you are using.

6. Protocols and frequencies supported

In this document, we are treating parallel NAND and serial NAND in the same way, but when speaking
about physical protocols, they are very different.

Serial NAND memories use basically the same physical protocol as the serial NOR memories, so you
can find complete info on the document for Serial NOR flash memories and we are not going to
duplicate info here.

While, regarding parallel NAND memories, the story is pretty different and the protocol used is quite
complex because a lot of lines are used. The parallel NAND protocol can be 8-bit or 16-bit, where the
number of bits corresponds to the number of data lines used to transfer data. Currently, we are only
supporting the 8-bit bus because the 16-bit protocol is deprecated but, if you really need it, you can
always ask for a quote.

The lines used by the parallel NAND protocol are the ones reported below:

FlashRunner NAND

DIO0 CLE

DIO1 ALE

DIO2 CE0#

DIO3 WE#

DIO4 RE#

DIO5 CE1# (If present)

DIO6 CE2# (If present)

DIO7 CE3# (If present)

DIO8 IO0

DIO9 IO1

DIO10 IO2

DIO11 IO3

DIO12 IO4

DIO13 IO5

DIO14 IO6

DIO15 IO7

For both serial and parallel NAND, the maximum frequency supported is 37.5MHz and it directly
influences the cycle time because it determines the data rate.

Attention: if you notice some instabilities, it could be related to the hardware setup (see the next
chapter).

https://smh-tech.com/remos_docs_remoto/Interfacing%20FlashRunner%20with%20Serial%20NOR%20Flash%20Memories.pdf

7. Hardware setup

Just like an F1 car, which differently performs according to the weather and track conditions, the
FlashRunner requires a good hardware setup to reach the best performances. In fact, the quality of
the connections between the FlashRunner and the target board is extremely important and in this
chapter we want to define some guidelines.

When using parallel NANDs or serial NANDs in Quad-SPI or Octo-SPI, you have a lot of data lines
changing states at the same time and the quality of the wirings is crucial:

• Use our flat cables with cable interface to go as near as possible to the target device.
• The wiring should be as short as possible and all the wiring should have all the same length.
• There should be as few discontinuities as possible (i.e. prefer one 30 cm cable instead of two

15 cm cables connected together).
• Add more ground wires between FlashRunner and the target device, possibly twisted with

each signal line, especially with the clock signal (also called RE# on parallel NAND memories).

In fact, these protocols are not designed to be robust to be used for In-System programming. They
were designed to guarantee a high data rate on the communication bus between the memory and
the processor, but the memory and the processor are on the same PCB, very close to each other and
using carefully designed routes.

Another common issue that can arise is the crosstalk: the phenomenon by which signals transmitted
on one or more lines generate undesired effects on other lines due to electromagnetic coupling
among them. For example, when transmitting 0x00 followed by 0xFF in Octo-SPI, the simultaneous
switching of eight data lines from 0 to 1 can pull the clock line to 1 and generate a spurious clock
pulse.
To mitigate this effect, one possible solution is to add small resistors (i.e. 100 Ohm for 3.3V devices
or 56 Ohm for 1.8V devices) in series on all data lines. These resistors decrease the current flow on
data lines and then reduce the interaction effect on the clock line.
One more useful trick to protect the clock line from the crosstalk is to add a small capactitor (i.e.
about 20~30 pF) between the clock and the ground line on the fixture side.

8. Flashing time examples

These are some examples of flashing times using our new drivers >= 2.03 and OS >= 3.19. Times were
measured using FRB files containing random data to cover the 75% memory of the target device to
simulate an actual customer firmware that is never filling the full memory with real data.

MT29F2G08ABAEA [2 Gbit]

Protocol Firmware size Masserase Program (and verify)

NANDx8
37.5 MHz

192 MB (Without ECC)
On-Die ECC enabled

0.81 s 36.16 s

NANDx8
37.5 MHz

198 MB (With ECC)
On-Die ECC disabled

0.81 s 25.18 s

W29N02GV [2 Gbit]

Protocol Firmware size Masserase Program (and verify)

NANDx8
37.5 MHz

198 MB (With ECC)
On-Die ECC disabled

0.95 s 39.45 s

Note: this memory does not have the On-Die ECC available.

0 5 10 15 20 25 30 35 40

On-Die ECC
Disabled

On-Die ECC
Enabled

Total flashing time (seconds)

Masserase Program

0 5 10 15 20 25 30 35 40 45

On-Die ECC
Disabled

Total flashing time (seconds)

Masserase Program

W25N02JW [2 Gbit]

Protocol Firmware size Masserase Program (and verify)

Quad-SPI
37.5 MHz

192 MB (Without ECC)
On-Die ECC enabled

1.09 s 60.64 s

Quad-SPI
37.5 MHz

198 MB (With ECC)
On-Die ECC disabled

1.09 s 59.02 s

W35N01JW [1 Gbit]

Protocol Firmware size Masserase Program (and verify)

Octo-SPI
37.5 MHz

96 MB (Without ECC)
On-Die ECC enabled

0.43 s 13.73 s

Octo-SPI
37.5 MHz

99 MB (With ECC)
On-Die ECC disabled

0.43 s 13.17 s

0 5 10 15 20 25 30 35 40 45 50 55 60 65

On-Die ECC
Disabled

On-Die ECC
Enabled

Total flashing time (seconds)

Masserase Program

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

On-Die ECC
Disabled

On-Die ECC
Enabled

Total flashing time (seconds)

Masserase Program

9. Frequently Asked Questions

Some answers to the most frequently asked questions:

How many channels are needed to use a NAND memory?

The answer to this question is not so easy because it depends on the protocol used.
For SPI or Quad-SPI memories, it is easy because only one channel is used and they are treated as any
usual device.
On the other hand, for parallel NAND memories using 8-bit bus or for Octo-SPI memories, more ISP
lines are needed and they cannot be managed by a single channel, so a pair of channels is needed,
for example, channels 1 and 2, or 3 and 4, etc.
This implicates some additional limitations on the FlashRunner NXG and the FlashRunner 2.0: when
using this special mode, the FlashRunner can parallelly flash only memories which employ the same
protocol. It is not possible to flash devices which is not a parallel NAND when using the FlashRunner
in 8-bit mode. For example, in case the user has to flash an Aurix TC397 using the same FlashRunner
used to flash a parallel NAND, then the Aurix TC397 can be connected to an empty channel and it can
be flashed before or after performing the operations on the NAND memory, but not at the same time.
In these situations, typically customers prefer to use two independent FlashRunner to use one in 8-
bit mode and the other one in standard mode.
Instead, for the FlashRunner HS, the situation is easier because there are dedicated active modules
that do the job, so more combinations are possible. FlashRunner HS is generally suggested for NAND
memories because it can be integrated with active modules very close to the target, this means better
signal integrity and, so, the possibility to reach a higher data rate without compromising stability.

How bad blocks are detected?

Bad blocks can be detected during different flashing operations:

1. During the connect command, FlashRunner scans the entire memory reading the first byte of
the spare area of the first page of each block. If that byte is different from 0xFF, then that
block is recognized as bad.

2. During the masserase command, FlashRunner executes the erase command for each block
and checks the result of that operation. If the erase operation fails, then that block is
recognized as bad.

3. When programming data, FlashRunner checks the result of the write operation and, if it fails,
then the block is recognized as bad.

4. When verifying data after programming, if there are uncorrectable errors by ECC or
mismatches in the data, FlashRunner tries to refresh the data on the block. If there are still
problems after the refreshment, the block is marked as bad.

When FlashRunner detects a bad block, it marks all the bytes of all the pages of that block as 0x00.

How does the dynamic detection of maximum bad blocks work?

When applying the skip method for bad block management, FlashRunner can detect when the
maximum amount of bad blocks is reached by a partition because it checks that there is not a partition
overflow. To make it simple, consider a partition that has 10 blocks in total and 9 blocks of data. When
finding a bad block in the middle of that partition, the last block of data will be programmed in the
last available block. When finding 2 bad blocks in the middle of the partition, the last block of data
should be shifted forward, overflowing the partition. In this last case, FlashRunne notices the problem
and returns an error interrupting the flashing operation.

	1. Introduction
	2. Contents
	3. How to create a project?
	4. Bad block management and memory partitions
	5. Error Correction Code (ECC) and bit error tolerance
	6. Protocols and frequencies supported
	7. Hardware setup
	8. Flashing time examples
	MT29F2G08ABAEA [2 Gbit]
	W29N02GV [2 Gbit]
	W25N02JW [2 Gbit]
	W35N01JW [1 Gbit]

	9. Frequently Asked Questions
	How many channels are needed to use a NAND memory?
	How bad blocks are detected?
	How does the dynamic detection of maximum bad blocks work?

