

Interfacing FlashRunner

with Power PC MCUs [56]

(MPC56xx and SPC56xx)

1. Introduction

The Power PC MCUs described in this document are the ancestors of the MPC57xx and SPC58xx: their
story and their applications are the same. In fact, there are a lot of common characteristics and that
is why you will notice many similarities to the documentation for MPC57xx and SPC58xx. Let us
consider this document for MPC56xx and SPC56xx an extension of the one for MCP57xx and SPC58xx
that can be found here: Interfacing FlashRunner with Power PC MCUs.

You can download the latest version of this document from this static link: Interfacing FlashRunner
with Power PC MCUs [56].

DC11545
Driver 2.21

July 2023
R. Ertolupi

http://smh-tech.com/remos_docs_remoto/Interfacing%20FlashRunner%20with%20Power%20PC%20MCUs.pdf
http://smh-tech.com/remos_docs_remoto/Interfacing%20FlashRunner%20with%20Power%20PC%20MCUs%20%5b56%5d.pdf
http://smh-tech.com/remos_docs_remoto/Interfacing%20FlashRunner%20with%20Power%20PC%20MCUs%20%5b56%5d.pdf

2. Contents

1. Introduction ... 1

2. Contents ... 2

3. Tips and tricks to flash Power PC MCUs .. 3

4. Sector erase.. 7

5. Shadow memory: lock and unlock using JTAG password .. 8

6. Flashing time examples .. 9

MPC5604B [0.5 MB]... 9
SPC56AP60 [1 MB] ... 9
SPC564A70 [2 MB] ... 10
SPC564B74 [3 MB] ... 10
MPC5674F [4 MB] .. 10
Other flashing time examples .. 11

7. Frequently Asked Questions ... 13

Are these new updates available for all FlashRunner models? .. 13
What are the differences between MPC56xx, PPC56xx, and SPC56xx? ... 13
What about MPC57xx and SPC58xx? ... 13
What about MPC55xx? .. 14

3. Tips and tricks to flash Power PC MCUs

In this section, we want to explain what operations are performed in the target devices and how these
operations work. This knowledge may help you to optimize even more your application.

The FlashRunner uses JTAG to access to the memories of these devices, which is one of the most
common protocols for microcontrollers and which needs four synchronous lines (TCK, TMS, TDI, and
TDO) and an optional asynchronous line (TRST). In addition to standard JTAG lines, the FlashRunner
also need to control the reset line of the target device: this line is very important and very critical as
well. It is crucial to have no interferences on the reset line because it could cause strange behaviours
of the device and the operations could likely fail.

The new driver, combined with an OS > 3.00, can support a clock frequency for JTAG up to 37.5 MHz,
which also helps to reduce flashing times. However, there are a couple of things to say about that.
The first one is that the customer needs a good hardware setup to be able to reach such a high
frequency, otherwise the quality of the signals will be bad and operations could fail.
The second aspect to consider is that the JTAG frequency is proportionally limited to the system clock
frequency (typically the limit is SYS_CLK /2 or /4). Exactly for this reason it is fundamental to enable
the PLL and that can be done when creating a project or editing the project file. As you can see from
the image below, when creating a project from our user interface, it is possible to define the
frequency of the external oscillator mounted for the device and the PLL frequency of the device.

After creating the project, these parameters will be encoded with these two lines:

#TCSETPAR FOSC 30000000

#TCSETPAR FPLL 150000000

For some devices the input clock is fixed to a single value because the internal oscillator is used, so
there are no choices for the user. So, you may wonder why we do not fix the PLL frequency as well to
simplify the usage, and the answer is: because most of these devices are available in different
revisions which differ for the maximum operating frequency supported, so the user must pay
attention to the actual part number used as target device and choose the correct PLL frequency.
For some devices, especially the ones which are less powerful, even by enabling the PLL, they cannot
support 37.5 MHz as JTAG clock but the user should not worry about that because the driver is
checking if the required specifications are respected and it automatically will lower the JTAG
frequency if needed.

Please, note that the configuration of the PLL done by the FlashRunner is volatile and it will be lost
after resetting the device, so it is completely transparent to the customer.

Enabling the PLL of the device not only allows to speed up the communication between the
FlashRunner and the Power PC MCU, but also makes the target device much more performant when
executing operations. This is even more relevant since we use the “Standard Software Driver” (aka
microkernel), which is a set of pre-compiled functions supplied by silicon producers to operate on the
device. Let us analyse how this can influence the standard commands:

• Masserase
This command erases all the content of the memory selected. The supported memories for
this command are: Code Flash and Data Flash.
Optionally, it is also possible to send four additional parameters to this command to select
only some sectors of memory to be erased. This can be useful to reduce the erase time and it
could be needed if the user wants to preserve some data into the memory and partially
reprogram it. See the chapter “Sector Erase” for more information.
The duration of Masserase depends only on the target device characteristics and there is not
much that we can do to improve this. Typically, it is extremely long, even longer than all the
other operations combined together.
The suggestion is to skip this operation in case the device is virgin. This can be done using a
conditional script based on the result of the blankcheck operation:

#IFERR TPCMD BLANKCHECK F

#THEN TPCMD MASSERASE F

#THEN TPCMD BLANKCHECK F

• BlankCheck

This command checks that all the bits of the selected memory are set to 1. The supported
memories for this command are: Code Flash and Data Flash. This operation is executed
internally by the device and it is typically extremely fast.
Optionally, it is also possible to send two additional parameters to this command: the address
from where to start checking and the number of bytes to check.

The duration of this operation depends on the size of the memory and by the internal
frequency of the Power PC MCU. So, enabling PLL will reduce a lot the duration of this
command and it can be about ten times faster.

• Program

This command takes the customer’s data from the FRB file and programs them into the
selected memory, the supported memories for this command are: Code Flash, Data Flash,
Shadow and OTP Test Memory.
Optionally, it is also possible to send two additional parameters to this command: the address
from where to start programming and the number of bytes to be programmed.

The duration of this command depends on many factors which are all important:
o The target device characteristics, in other words, how much time is needed to write

data into the memory.
o The target device frequency because it determines how fast the device is to process

data, so it is important to have the PLL enabled.
o The JTAG frequency because it sets the bitrate of the communication between

FlashRunner and the target device.

The suggestion to improve the performances of this command is to set the FRB file with the
“IGNORE_BLANK_PAGE” option. This will skip the program operation for any page which
contains only 0xFF bytes.

#TPSETSRC myData.frb IGNORE_BLANK_PAGE

• Verify Readout

This command checks that data contained in the memory of the device corresponds to FRB
data. The supported memories for this command are: Code Flash, Data Flash, Shadow and
OTP Test Memory.
Optionally, it is also possible to send two additional parameters to this command: the address
from where to start checking and the number of bytes to check.

#TPCMD VERIFY F R 0xFC0000 0x1000

This command works exactly like the program command with the only exception that the
device reads (instead of writing) data from the memory and compares that with the data
received from FlashRunner.
Since the mechanism is totally equal to the one used by the program command, if any error
was introduced during the program command, it is possible that the same error could be
introduced during the verify command and this could lead to a possible undetected error. For
this reason, we suggest using the verify checksum instead of the verify readout, or maybe
combining them.

• Verify Checksum
This command asks the target device to calculate the 32-bit checksum of the selected memory
region, meanwhile, the FlashRunner calculates the expected checksum according to FRB data
and then the two values are compared. The supported memories for this command are: Code
Flash, Data Flash, Shadow and OTP Test Memory. This operation is executed internally by the
device and it is typically extremely fast, almost like the blankcheck.

#TPCMD VERIFY F S

Optionally, it is also possible to send up to three additional parameters to this command: the
address from where to start the checksum calculation, the number of bytes to consider in the

calculation, and the expected checksum value. This will result faster because the FlashRunner
does not need to spend time calculating the checksum of the FRB file.

#TPCMD VERIFY F S 0x00000000 0x00001000 0x4610E323

To get the value to use as expected checksum parameter, you can use the command below,
which can be executed by FlashRunner without being connected to the target device because
it is just an internal calculation and it will return the commands to use in the real-time log.

#TPCMD CALC_FRB_CHKSUM

• Margin check

This optional command can be used by customers to check that the voltage levels of all the
memory cells are at the proper level. This is useful to guarantee the expected data retention.
Basically, this command asks the device to calculate the MISR values for each bank of memory
and for both threshold levels: high and low. Then the driver will check that MISR values
obtained using high threshold correspond to the ones obtained using low threshold.
Attention: this command is not verifying that the memory content is matching with the FRB
data, it is just checking the memory status, so users should call this command after the verify
command. This margin check command can simply be called without any parameters:

#TPCMD MARGIN_CHECK

Warning from ST and NXP: doing margin reads repetitively results in degradation of the flash
memory array, and shortens the expected lifetime experienced at normal read levels. For
these reasons the margin read usage is allowed only in factory mode, while it is forbidden to
use it inside the user application.

After this explanation should be clear what can be improved by the user, what can be improved by
SMH, and what cannot be improved because it depends only on the characteristics of the target
device.

Warning: performing the program and verify commands using an FRB which does not contain any
data for the selected memory region will return pass. The driver has been designed in this way to be
more flexible so, basically, if a customer gives no data to program and verify, then the driver does not
perform any operation and it just returns pass after completing the research for the data.

4. Sector erase

As already said in the previous chapter, the user can also choose to erase only some sectors of
memory just by setting some more parameters to the masserase command. This could be the most
optimized choice in case the erase cannot be skipped.

#TPCMD MASSERASE <MemType> <SEL_LOW> <SEL_MID> <SEL_HIGH>

The parameters of this command are:

• MemType
This indicates the memory chosen, it can be one of the following characters:

o F – Code Flash memory.

o E – Data Flash memory.

• SEL_LOW SEL_MID SEL_HIGH
These are the bitmasks that select the block of memory to erase. It is forbidden to select a
block that is not part of the MemType selected.

Usage example:

#TPCMD MASSERASE F 0x3F 0x0 0x0

Using bitmasks rather than addresses is a design choice that we made to get higher reliability. In fact,
the sectors have different sizes and they are not in a fixed order for all devices so, decoding addresses
to bitmasks from the software is very complex and complexity does not go along with reliability.
Moreover, also the API of ST and NXP work in this way, so we are following their choice as well.

To check that the operation was successfully done, it is possible to perform the blankcheck operation
specifying the address and size, so the user will be able to check that the memory sectors were
properly selected. For example:

#TPCMD BLANKCHECK F 0x0 0x20000

The command to erase only some sectors of memory may not seem user-friendly at all but, with some
explanations, it could be easier to understand. In fact, choosing the bits to select the sectors of
memory to be erased requires a bit of effort and just by following the Reference Manual of the device.

5. Shadow memory: lock and unlock using JTAG password

Shadow memory is a very special memory, which should never be programmed randomly until you
want to trash the device. Since this memory is so critical, in this chapter we want to explain how to
properly manage it using FlashRunner.

FlashRunner does not allow the user to erase this memory without re-programming some data, so,
the customer can only use the program and verify commands. When calling the program command
without specifying the memory addresses, FlashRunner will automatically erase the Shadow memory
before writing new data. Otherwise, if the program command is called specifying the address and the
size of the data to be programmed, the Shadow will not be erased to allow only the selected data to
be overwritten.

The Shadow memory contains important settings that allow the user to protect the device using the
JTAG password in various ways. For these devices, the size of the JTAG password is 64-bit. To access
a locked device the programmer must send the JTAG password during the execution of the connect
command. The user must set the FlashRunner to use the JTAG password before calling that command
and this can be done by setting this parameter to YES:

#TCSETPAR PASS_EN YES

After enabling the JTAG password, the user must send the value of the password to use to unlock the
device and this can be done using dynamic memory (or FRB) at 0x00203DD8, which corresponds to
the actual memory address of the password inside the Shadow memory. Warning: 0x00203DD8 is a
typical address, there are some devices which have a different base address for the Shadow region,
so the password should be placed at: base address + 0x3DD8.

Alternatively, it is also possible to use the command: PWD_ENTRY <32bit_1> <32bit_2>.
Which sets the password to unlock the device and which must be called before the connect
command. It receives 8-byte (two 32-bit words) as parameter to set the password to use.

6. Flashing time examples

These are some examples of flashing times using our new drivers and OS > 3.00.

Additional notes:

1. Times were measured using FRB files containing random data to cover the entire code flash
memory of the target device.

2. We do not consider the masserase time in the total flashing time because it is usually skipped.
3. Verify checksum executed sending the pre-calculated checksum as a parameter.

MPC5604B [0.5 MB]

Frequency Masserase BlankCheck Program Verify R Verify S

JTAG: 30.0 MHz
PLL: 64.0 MHz

2.32 s 0.02 s 1.65 s 0.29 s 0.04 s

SPC56AP60 [1 MB]

Frequency Masserase BlankCheck Program Verify R Verify S

JTAG: 30.0 MHz
PLL: 64.0 MHz

4.04 s 0.05 s 2.78 s 0.58 s 0.13 s

0 0,4 0,8 1,2 1,6 2

JTAG: 30.0 MHz
PLL: 64.0 MHz

Total flashing time (seconds)

BlankCheck Program Verify R Verify S

0 0,6 1,2 1,8 2,4 3 3,6

JTAG: 30.0 MHz
PLL: 64.0 MHz

Total flashing time (seconds)

BlankCheck Program Verify R Verify S

SPC564A70 [2 MB]

Frequency Masserase BlankCheck Program Verify R Verify S

JTAG: 37.5 MHz
PLL: 150 MHz

12.88 s 0.08 s 4.55 s 0.87 s 0.11 s

SPC564B74 [3 MB]

Frequency Masserase BlankCheck Program Verify R Verify S

JTAG: 30.0 MHz
PLL: 120 MHz

8.84 s 0.14 s 7.95 s 1.93 s 0.19 s

MPC5674F [4 MB]

Frequency Masserase BlankCheck Program Verify R Verify S

JTAG: 37.5 MHz
PLL: 264 MHz

20.53 s 0.19 s 9.86 s 1.97 s 0.25 s

0 0,8 1,6 2,4 3,2 4 4,8 5,6

JTAG: 37.5 MHz
PLL: 150 MHz

Total flashing time (seconds)

BlankCheck Program Verify R Verify S

0 1,5 3 4,5 6 7,5 9 10,5

JTAG: 30.0 MHz
PLL: 120 MHz

Total flashing time (seconds)

BlankCheck Program Verify R Verify S

0 2 4 6 8 10 12 14

JTAG: 37.5 MHz
PLL: 264 MHz

Total flashing time (seconds)

BlankCheck Program Verify R Verify S

Other flashing time examples

These are some flashing times of other devices. Time for masserase is not reported because it is
typically skipped for virgin devices and total time is considering both verify readout and checksum.

Device
Size

[PLL Freq.]
[JTAG Freq.]

BlankCheck Program Verify R Verify S Total

SPC560D40
0.25 MB

[48.0 MHz]
[20.0 MHz]

0.03 s 4.68 s 3.75 s 0.04 s 8.50 s

MPC5602P
0.25 MB

[64.0 MHz]
[30.0 MHz]

0.05 s 3.29 s 2.29 s 0.01 s 5.73 s

SPC560P40
0.25 MB

[64.0 MHz]
[30.0 MHz]

0.01 s 3.58 s 2.76 s 0.02 s 6.37 s

MPC5604E
0.5 MB

[60.0 MHz]
[30.0 MHz]

0.01 s 1.62 s 0.29 s 0.07 s 1.99 s

SPC560B50
0.5 MB

[64.0 MHz]
[30.0 MHz]

0.02 s 1.74 s 0.29 s 0.03 s 2.08 s

MPC5606B
1 MB

[64.0 MHz]
[30.0 MHz]

0.04 s 2.59 s 0.58 s 0.07 s 3.28 s

SPC560P60
1 MB

[64.0 MHz]
[30.0 MHz]

0.05 s 2.80 s 0.80 s 0.13 s 3.78 s

SPC564L60
1 MB

[120 MHz]
[30.0 MHz]

0.05 s 3.02 s 0.58 s 0.07 s 3.72 s

MPC5606S
1 MB

[64.0 MHz]
[30.0 MHz]

0.04 s 3.39 s 0.59 s 0.04 s 4.06 s

SPC560B64
1.5 MB

[64.0 MHz]
[30.0 MHz]

0.06 s 4.07 s 0.87 s 0.10 s 5.10 s

SPC56EC64
1.5 MB

[120 MHz]
[30.0 MHz]

0.05 s 4.10 s 0.86 s 0.09 s 5.10 s

SPC563M64
1.5 MB

[64.0 MHz]
[30.0 MHz]

0.07 s 5.15 s 0.86 s 0.15 s 6.23 s

MPC5645S
2 MB

[124 MHz]
[30.0MHz]

0.09 s 4.86 s 1.07 s 0.14 s 6.16 s

SPC56EL70
2 MB

[120 MHz]
[30.0MHz]

0.10 s 7.37 s 1.39 s 0.14 s 9.00 s

MPC5646C
3 MB

[120 MHz]
[30.0 MHz]

0.17 s 8.23 s 1.97 s 0.20 s 10.57 s

MPC5644A
4 MB

[150 MHz]
[37.5 MHz]

0.45 s 11.19 s 2.12 s 0.58 s 14.34 s

MPC5676R
6 MB

[180 MHz]
[37.5 MHz]

0.41 s 9.82 s 2.60 s 0.60 s 13.43 s

7. Frequently Asked Questions

Some answers to the most frequently asked questions:

Are these new updates available for all FlashRunner models?

No, these updates are only for the FlashRunner NXG, the FlashRunner 2.0, and the FlashRunner HS.
These newer models are more powerful and they can be much faster than the FlashRunner of the
classic series.

What are the differences between MPC56xx, PPC56xx, and SPC56xx?

From our point of view, there are no significant differences. NXP (Freescale) uses this particular
standard for their Power PC MCUs, where the first letter indicates the qualification, as you can see in
the example below. Since we just do in-system programming, for us they are equals and that letter is
irrelevant. That is why in our device list all three versions with different qualifications are merged and
named as MPC56xx.

What about MPC57xx and SPC58xx?

We are also supporting them on a different driver because they have different characteristics. Find
more details on their dedicated document: Interfacing FlashRunner with Power PC MCUs.

http://smh-tech.com/remos_docs_remoto/Interfacing%20FlashRunner%20with%20Power%20PC%20MCUs.pdf

What about MPC55xx?

We are also supporting them on a different driver PowerMCU55 because they have different
characteristics. They are deprecated devices and they have limited features, so we are just very basic
operations without any lock-unlock option.

	1. Introduction
	2. Contents
	3. Tips and tricks to flash Power PC MCUs
	4. Sector erase
	5. Shadow memory: lock and unlock using JTAG password
	6. Flashing time examples
	MPC5604B [0.5 MB]
	SPC56AP60 [1 MB]
	SPC564A70 [2 MB]
	SPC564B74 [3 MB]
	MPC5674F [4 MB]
	Other flashing time examples

	7. Frequently Asked Questions
	Are these new updates available for all FlashRunner models?
	What are the differences between MPC56xx, PPC56xx, and SPC56xx?
	What about MPC57xx and SPC58xx?
	What about MPC55xx?

